David Criado‐Ruiz, Joan Vallès, Randall J. Bayer, Luis Palazzesi, Jaume Pellicer, Iván Pérez Lorenzo, Olivier Maurin, Elaine Françoso, Shyamali Roy, Ilia J. Leitch, Félix Forest, William J. Baker, Lisa Pokorny, Oriane Hidalgo, Gonzalo Nieto Feliner
{"title":"用系统发生组学的方法厘清庞大而多样的菊科植物 Anthemideae(菊科)的进化过程","authors":"David Criado‐Ruiz, Joan Vallès, Randall J. Bayer, Luis Palazzesi, Jaume Pellicer, Iván Pérez Lorenzo, Olivier Maurin, Elaine Françoso, Shyamali Roy, Ilia J. Leitch, Félix Forest, William J. Baker, Lisa Pokorny, Oriane Hidalgo, Gonzalo Nieto Feliner","doi":"10.1111/jse.13118","DOIUrl":null,"url":null,"abstract":"The daisy tribe Anthemideae Cass. is one of the largest and most diverse tribes within Asteraceae. We analyzed a data set including 61 out of 111 Anthemideae genera, and all but four of the 19 currently recognized subtribes (Inulantherinae, Lapidophorinae, Lonadinae, and Vogtiinae) using a targeted high‐throughput sequencing approach, the first focused on the tribe. We followed different phylogenomic approaches, using nuclear and plastid data, as well as additional analytical methods to estimate divergence times and diversification rates, to unravel the evolutionary history and classification of this tribe. Our results reinforce the phylogenetic backbone of the Anthemideae advanced in previous studies and further reveal the possible occurrence of ancient hybridization events, plastid capture, and/or incomplete lineage sorting (ILS), suggesting that complex evolutionary processes have played an important role in the evolution of this tribe. The results also support the merging of subtribe Physmasperminae into Athanasiinae and subtribe Matricariinae into Anthemidinae and clarify previously unresolved relationships. Furthermore, the study provides additional insights into the biogeographic patterns within the tribe by identifying three main groups: the Southern African Grade, the Asian Clade, and the circum‐Mediterranean Clade. These groups partially coincide with previously identified ones. Overall, this research provides a more detailed understanding of the Anthemideae tribe and improves its classification. The study also emphasizes the importance of phylogenomic approaches for deciphering the evolutionary dynamics of large and diverse plant lineages.","PeriodicalId":17087,"journal":{"name":"Journal of Systematics and Evolution","volume":"21 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A phylogenomic approach to disentangling the evolution of the large and diverse daisy tribe Anthemideae (Asteraceae)\",\"authors\":\"David Criado‐Ruiz, Joan Vallès, Randall J. Bayer, Luis Palazzesi, Jaume Pellicer, Iván Pérez Lorenzo, Olivier Maurin, Elaine Françoso, Shyamali Roy, Ilia J. Leitch, Félix Forest, William J. Baker, Lisa Pokorny, Oriane Hidalgo, Gonzalo Nieto Feliner\",\"doi\":\"10.1111/jse.13118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The daisy tribe Anthemideae Cass. is one of the largest and most diverse tribes within Asteraceae. We analyzed a data set including 61 out of 111 Anthemideae genera, and all but four of the 19 currently recognized subtribes (Inulantherinae, Lapidophorinae, Lonadinae, and Vogtiinae) using a targeted high‐throughput sequencing approach, the first focused on the tribe. We followed different phylogenomic approaches, using nuclear and plastid data, as well as additional analytical methods to estimate divergence times and diversification rates, to unravel the evolutionary history and classification of this tribe. Our results reinforce the phylogenetic backbone of the Anthemideae advanced in previous studies and further reveal the possible occurrence of ancient hybridization events, plastid capture, and/or incomplete lineage sorting (ILS), suggesting that complex evolutionary processes have played an important role in the evolution of this tribe. The results also support the merging of subtribe Physmasperminae into Athanasiinae and subtribe Matricariinae into Anthemidinae and clarify previously unresolved relationships. Furthermore, the study provides additional insights into the biogeographic patterns within the tribe by identifying three main groups: the Southern African Grade, the Asian Clade, and the circum‐Mediterranean Clade. These groups partially coincide with previously identified ones. Overall, this research provides a more detailed understanding of the Anthemideae tribe and improves its classification. The study also emphasizes the importance of phylogenomic approaches for deciphering the evolutionary dynamics of large and diverse plant lineages.\",\"PeriodicalId\":17087,\"journal\":{\"name\":\"Journal of Systematics and Evolution\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systematics and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/jse.13118\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systematics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jse.13118","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
A phylogenomic approach to disentangling the evolution of the large and diverse daisy tribe Anthemideae (Asteraceae)
The daisy tribe Anthemideae Cass. is one of the largest and most diverse tribes within Asteraceae. We analyzed a data set including 61 out of 111 Anthemideae genera, and all but four of the 19 currently recognized subtribes (Inulantherinae, Lapidophorinae, Lonadinae, and Vogtiinae) using a targeted high‐throughput sequencing approach, the first focused on the tribe. We followed different phylogenomic approaches, using nuclear and plastid data, as well as additional analytical methods to estimate divergence times and diversification rates, to unravel the evolutionary history and classification of this tribe. Our results reinforce the phylogenetic backbone of the Anthemideae advanced in previous studies and further reveal the possible occurrence of ancient hybridization events, plastid capture, and/or incomplete lineage sorting (ILS), suggesting that complex evolutionary processes have played an important role in the evolution of this tribe. The results also support the merging of subtribe Physmasperminae into Athanasiinae and subtribe Matricariinae into Anthemidinae and clarify previously unresolved relationships. Furthermore, the study provides additional insights into the biogeographic patterns within the tribe by identifying three main groups: the Southern African Grade, the Asian Clade, and the circum‐Mediterranean Clade. These groups partially coincide with previously identified ones. Overall, this research provides a more detailed understanding of the Anthemideae tribe and improves its classification. The study also emphasizes the importance of phylogenomic approaches for deciphering the evolutionary dynamics of large and diverse plant lineages.
期刊介绍:
Journal of Systematics and Evolution (JSE, since 2008; formerly Acta Phytotaxonomica Sinica) is a plant-based international journal newly dedicated to the description and understanding of the biological diversity. It covers: description of new taxa, monographic revision, phylogenetics, molecular evolution and genome evolution, evolutionary developmental biology, evolutionary ecology, population biology, conservation biology, biogeography, paleobiology, evolutionary theories, and related subjects.