{"title":"一种新型磁性纳米粒子作为用于铃木交叉偶联反应的高效可回收异相催化剂","authors":"Hui Jin, Mengyu Cui, Peiwen Liu, Zhuo Wang, Tongxia Jin, Yonghui Yang, Weiping Zhu and Xuhong Qian","doi":"10.1039/D4RE00226A","DOIUrl":null,"url":null,"abstract":"<p >Heterogeneous palladium catalysts are widely used in catalytic hydrogenation, oxidation, reduction, and coupling reactions due to their good stability, recyclability, and reusability. Based on the palladium ion fluorescent probe, a novel magnetically recyclable heterogeneous palladium catalyst Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@FSM@Pd was constructed and characterized, which is highly efficient and reusable for the Suzuki–Miyaura cross-coupling reaction. The subsequent series of Maitlis' filtration test, catalyst concentration–yield kinetic experiments, and phase trajectory experiments further demonstrated that Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@FSM@Pd catalyzed through a heterogeneous mechanism under selected reaction conditions. In addition, Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@FSM@Pd was applied to catalyze the synthesis of five intermediates of active pharmaceutical ingredients (APIs): valsartan, sonidegib, erdafitinib, tubulin inhibitor, and lumacaftor. Importantly, the palladium residue in the API intermediates synthesized with Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@FSM@Pd as catalyst was less than 1 ppm. Furthermore, Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@FSM@Pd is stable and can be reused at least 5 times without losing activity.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 11","pages":" 2954-2962"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel magnetic nanoparticle as an efficient and recyclable heterogeneous catalyst for the Suzuki cross-coupling reaction†\",\"authors\":\"Hui Jin, Mengyu Cui, Peiwen Liu, Zhuo Wang, Tongxia Jin, Yonghui Yang, Weiping Zhu and Xuhong Qian\",\"doi\":\"10.1039/D4RE00226A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Heterogeneous palladium catalysts are widely used in catalytic hydrogenation, oxidation, reduction, and coupling reactions due to their good stability, recyclability, and reusability. Based on the palladium ion fluorescent probe, a novel magnetically recyclable heterogeneous palladium catalyst Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@FSM@Pd was constructed and characterized, which is highly efficient and reusable for the Suzuki–Miyaura cross-coupling reaction. The subsequent series of Maitlis' filtration test, catalyst concentration–yield kinetic experiments, and phase trajectory experiments further demonstrated that Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@FSM@Pd catalyzed through a heterogeneous mechanism under selected reaction conditions. In addition, Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@FSM@Pd was applied to catalyze the synthesis of five intermediates of active pharmaceutical ingredients (APIs): valsartan, sonidegib, erdafitinib, tubulin inhibitor, and lumacaftor. Importantly, the palladium residue in the API intermediates synthesized with Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@FSM@Pd as catalyst was less than 1 ppm. Furthermore, Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@FSM@Pd is stable and can be reused at least 5 times without losing activity.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":\" 11\",\"pages\":\" 2954-2962\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00226a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00226a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel magnetic nanoparticle as an efficient and recyclable heterogeneous catalyst for the Suzuki cross-coupling reaction†
Heterogeneous palladium catalysts are widely used in catalytic hydrogenation, oxidation, reduction, and coupling reactions due to their good stability, recyclability, and reusability. Based on the palladium ion fluorescent probe, a novel magnetically recyclable heterogeneous palladium catalyst Fe3O4@FSM@Pd was constructed and characterized, which is highly efficient and reusable for the Suzuki–Miyaura cross-coupling reaction. The subsequent series of Maitlis' filtration test, catalyst concentration–yield kinetic experiments, and phase trajectory experiments further demonstrated that Fe3O4@FSM@Pd catalyzed through a heterogeneous mechanism under selected reaction conditions. In addition, Fe3O4@FSM@Pd was applied to catalyze the synthesis of five intermediates of active pharmaceutical ingredients (APIs): valsartan, sonidegib, erdafitinib, tubulin inhibitor, and lumacaftor. Importantly, the palladium residue in the API intermediates synthesized with Fe3O4@FSM@Pd as catalyst was less than 1 ppm. Furthermore, Fe3O4@FSM@Pd is stable and can be reused at least 5 times without losing activity.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.