基于集线器的蜂群性能预测

Puneet Jain, Chaitanya Dwivedi, Vigynesh Bhatt, Nick Smith, Michael A Goodrich
{"title":"基于集线器的蜂群性能预测","authors":"Puneet Jain, Chaitanya Dwivedi, Vigynesh Bhatt, Nick Smith, Michael A Goodrich","doi":"arxiv-2408.04822","DOIUrl":null,"url":null,"abstract":"A hub-based colony consists of multiple agents who share a common nest site\ncalled the hub. Agents perform tasks away from the hub like foraging for food\nor gathering information about future nest sites. Modeling hub-based colonies\nis challenging because the size of the collective state space grows rapidly as\nthe number of agents grows. This paper presents a graph-based representation of\nthe colony that can be combined with graph-based encoders to create\nlow-dimensional representations of collective state that can scale to many\nagents for a best-of-N colony problem. We demonstrate how the information in\nthe low-dimensional embedding can be used with two experiments. First, we show\nhow the information in the tensor can be used to cluster collective states by\nthe probability of choosing the best site for a very small problem. Second, we\nshow how structured collective trajectories emerge when a graph encoder is used\nto learn the low-dimensional embedding, and these trajectories have information\nthat can be used to predict swarm performance.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Prediction of Hub-Based Swarms\",\"authors\":\"Puneet Jain, Chaitanya Dwivedi, Vigynesh Bhatt, Nick Smith, Michael A Goodrich\",\"doi\":\"arxiv-2408.04822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hub-based colony consists of multiple agents who share a common nest site\\ncalled the hub. Agents perform tasks away from the hub like foraging for food\\nor gathering information about future nest sites. Modeling hub-based colonies\\nis challenging because the size of the collective state space grows rapidly as\\nthe number of agents grows. This paper presents a graph-based representation of\\nthe colony that can be combined with graph-based encoders to create\\nlow-dimensional representations of collective state that can scale to many\\nagents for a best-of-N colony problem. We demonstrate how the information in\\nthe low-dimensional embedding can be used with two experiments. First, we show\\nhow the information in the tensor can be used to cluster collective states by\\nthe probability of choosing the best site for a very small problem. Second, we\\nshow how structured collective trajectories emerge when a graph encoder is used\\nto learn the low-dimensional embedding, and these trajectories have information\\nthat can be used to predict swarm performance.\",\"PeriodicalId\":501315,\"journal\":{\"name\":\"arXiv - CS - Multiagent Systems\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于集线器的蚁群由多个代理组成,它们共享一个共同的巢穴(称为集线器)。代理在远离中心的地方执行任务,如觅食或收集有关未来巢址的信息。对基于集线器的蚁群进行建模具有挑战性,因为随着代理数量的增加,集体状态空间的大小也会迅速增长。本文介绍了一种基于图的蚁群表示法,它可以与基于图的编码器相结合,创建集体状态的低维表示法,这种表示法可以扩展到 N 种最佳蚁群问题中的多个代理。我们通过两个实验展示了如何利用低维嵌入信息。首先,我们展示了如何利用张量中的信息,按照在一个很小的问题中选择最佳地点的概率,对集体状态进行聚类。其次,我们展示了当使用图编码器学习低维嵌入时,结构化的集体轨迹是如何出现的,这些轨迹中的信息可用于预测蜂群的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Prediction of Hub-Based Swarms
A hub-based colony consists of multiple agents who share a common nest site called the hub. Agents perform tasks away from the hub like foraging for food or gathering information about future nest sites. Modeling hub-based colonies is challenging because the size of the collective state space grows rapidly as the number of agents grows. This paper presents a graph-based representation of the colony that can be combined with graph-based encoders to create low-dimensional representations of collective state that can scale to many agents for a best-of-N colony problem. We demonstrate how the information in the low-dimensional embedding can be used with two experiments. First, we show how the information in the tensor can be used to cluster collective states by the probability of choosing the best site for a very small problem. Second, we show how structured collective trajectories emerge when a graph encoder is used to learn the low-dimensional embedding, and these trajectories have information that can be used to predict swarm performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1