生成患者友好型医疗报告的代理 LLM 工作流程

Malavikha Sudarshan, Sophie Shih, Estella Yee, Alina Yang, John Zou, Cathy Chen, Quan Zhou, Leon Chen, Chinmay Singhal, George Shih
{"title":"生成患者友好型医疗报告的代理 LLM 工作流程","authors":"Malavikha Sudarshan, Sophie Shih, Estella Yee, Alina Yang, John Zou, Cathy Chen, Quan Zhou, Leon Chen, Chinmay Singhal, George Shih","doi":"arxiv-2408.01112","DOIUrl":null,"url":null,"abstract":"The application of Large Language Models (LLMs) in healthcare is expanding\nrapidly, with one potential use case being the translation of formal medical\nreports into patient-legible equivalents. Currently, LLM outputs often need to\nbe edited and evaluated by a human to ensure both factual accuracy and\ncomprehensibility, and this is true for the above use case. We aim to minimize\nthis step by proposing an agentic workflow with the Reflexion framework, which\nuses iterative self-reflection to correct outputs from an LLM. This pipeline\nwas tested and compared to zero-shot prompting on 16 randomized radiology\nreports. In our multi-agent approach, reports had an accuracy rate of 94.94%\nwhen looking at verification of ICD-10 codes, compared to zero-shot prompted\nreports, which had an accuracy rate of 68.23%. Additionally, 81.25% of the\nfinal reflected reports required no corrections for accuracy or readability,\nwhile only 25% of zero-shot prompted reports met these criteria without needing\nmodifications. These results indicate that our approach presents a feasible\nmethod for communicating clinical findings to patients in a quick, efficient\nand coherent manner whilst also retaining medical accuracy. The codebase is\navailable for viewing at\nhttp://github.com/malavikhasudarshan/Multi-Agent-Patient-Letter-Generation.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agentic LLM Workflows for Generating Patient-Friendly Medical Reports\",\"authors\":\"Malavikha Sudarshan, Sophie Shih, Estella Yee, Alina Yang, John Zou, Cathy Chen, Quan Zhou, Leon Chen, Chinmay Singhal, George Shih\",\"doi\":\"arxiv-2408.01112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of Large Language Models (LLMs) in healthcare is expanding\\nrapidly, with one potential use case being the translation of formal medical\\nreports into patient-legible equivalents. Currently, LLM outputs often need to\\nbe edited and evaluated by a human to ensure both factual accuracy and\\ncomprehensibility, and this is true for the above use case. We aim to minimize\\nthis step by proposing an agentic workflow with the Reflexion framework, which\\nuses iterative self-reflection to correct outputs from an LLM. This pipeline\\nwas tested and compared to zero-shot prompting on 16 randomized radiology\\nreports. In our multi-agent approach, reports had an accuracy rate of 94.94%\\nwhen looking at verification of ICD-10 codes, compared to zero-shot prompted\\nreports, which had an accuracy rate of 68.23%. Additionally, 81.25% of the\\nfinal reflected reports required no corrections for accuracy or readability,\\nwhile only 25% of zero-shot prompted reports met these criteria without needing\\nmodifications. These results indicate that our approach presents a feasible\\nmethod for communicating clinical findings to patients in a quick, efficient\\nand coherent manner whilst also retaining medical accuracy. The codebase is\\navailable for viewing at\\nhttp://github.com/malavikhasudarshan/Multi-Agent-Patient-Letter-Generation.\",\"PeriodicalId\":501315,\"journal\":{\"name\":\"arXiv - CS - Multiagent Systems\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大语言模型(LLM)在医疗保健领域的应用正在迅速扩大,其中一个潜在的应用案例是将正式的医疗报告翻译成病人可理解的等价物。目前,LLM 的输出结果通常需要由人工进行编辑和评估,以确保事实的准确性和可理解性,上述用例也是如此。我们的目标是利用 Reflexion 框架提出一种代理工作流程,利用迭代式自我反思来修正 LLM 的输出,从而最大限度地减少这一步骤。我们在 16 份随机放射学报告中对这一管道进行了测试,并与零镜头提示进行了比较。在我们的多代理方法中,报告在验证 ICD-10 编码时的准确率为 94.94%,而零次提示报告的准确率为 68.23%。此外,81.25% 的最终反映报告无需对准确性或可读性进行修改,而只有 25% 的零镜头提示报告符合这些标准而无需修改。这些结果表明,我们的方法是一种可行的方法,既能快速、高效、连贯地向患者传达临床结果,又能保持医疗准确性。代码库可在http://github.com/malavikhasudarshan/Multi-Agent-Patient-Letter-Generation。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Agentic LLM Workflows for Generating Patient-Friendly Medical Reports
The application of Large Language Models (LLMs) in healthcare is expanding rapidly, with one potential use case being the translation of formal medical reports into patient-legible equivalents. Currently, LLM outputs often need to be edited and evaluated by a human to ensure both factual accuracy and comprehensibility, and this is true for the above use case. We aim to minimize this step by proposing an agentic workflow with the Reflexion framework, which uses iterative self-reflection to correct outputs from an LLM. This pipeline was tested and compared to zero-shot prompting on 16 randomized radiology reports. In our multi-agent approach, reports had an accuracy rate of 94.94% when looking at verification of ICD-10 codes, compared to zero-shot prompted reports, which had an accuracy rate of 68.23%. Additionally, 81.25% of the final reflected reports required no corrections for accuracy or readability, while only 25% of zero-shot prompted reports met these criteria without needing modifications. These results indicate that our approach presents a feasible method for communicating clinical findings to patients in a quick, efficient and coherent manner whilst also retaining medical accuracy. The codebase is available for viewing at http://github.com/malavikhasudarshan/Multi-Agent-Patient-Letter-Generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1