CommonUppRoad:自动驾驶汽车的正式建模、验证、学习和可视化框架

Rong Gu, Kaige Tan, Andreas Holck Høeg-Petersen, Lei Feng, Kim Guldstrand Larsen
{"title":"CommonUppRoad:自动驾驶汽车的正式建模、验证、学习和可视化框架","authors":"Rong Gu, Kaige Tan, Andreas Holck Høeg-Petersen, Lei Feng, Kim Guldstrand Larsen","doi":"arxiv-2408.01093","DOIUrl":null,"url":null,"abstract":"Combining machine learning and formal methods (FMs) provides a possible\nsolution to overcome the safety issue of autonomous driving (AD) vehicles.\nHowever, there are gaps to be bridged before this combination becomes\npractically applicable and useful. In an attempt to facilitate researchers in\nboth FMs and AD areas, this paper proposes a framework that combines two\nwell-known tools, namely CommonRoad and UPPAAL. On the one hand, CommonRoad can\nbe enhanced by the rigorous semantics of models in UPPAAL, which enables a\nsystematic and comprehensive understanding of the AD system's behaviour and\nthus strengthens the safety of the system. On the other hand, controllers\nsynthesised by UPPAAL can be visualised by CommonRoad in real-world road\nnetworks, which facilitates AD vehicle designers greatly adopting formal models\nin system design. In this framework, we provide automatic model conversions\nbetween CommonRoad and UPPAAL. Therefore, users only need to program in Python\nand the framework takes care of the formal models, learning, and verification\nin the backend. We perform experiments to demonstrate the applicability of our\nframework in various AD scenarios, discuss the advantages of solving motion\nplanning in our framework, and show the scalability limit and possible\nsolutions.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CommonUppRoad: A Framework of Formal Modelling, Verifying, Learning, and Visualisation of Autonomous Vehicles\",\"authors\":\"Rong Gu, Kaige Tan, Andreas Holck Høeg-Petersen, Lei Feng, Kim Guldstrand Larsen\",\"doi\":\"arxiv-2408.01093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combining machine learning and formal methods (FMs) provides a possible\\nsolution to overcome the safety issue of autonomous driving (AD) vehicles.\\nHowever, there are gaps to be bridged before this combination becomes\\npractically applicable and useful. In an attempt to facilitate researchers in\\nboth FMs and AD areas, this paper proposes a framework that combines two\\nwell-known tools, namely CommonRoad and UPPAAL. On the one hand, CommonRoad can\\nbe enhanced by the rigorous semantics of models in UPPAAL, which enables a\\nsystematic and comprehensive understanding of the AD system's behaviour and\\nthus strengthens the safety of the system. On the other hand, controllers\\nsynthesised by UPPAAL can be visualised by CommonRoad in real-world road\\nnetworks, which facilitates AD vehicle designers greatly adopting formal models\\nin system design. In this framework, we provide automatic model conversions\\nbetween CommonRoad and UPPAAL. Therefore, users only need to program in Python\\nand the framework takes care of the formal models, learning, and verification\\nin the backend. We perform experiments to demonstrate the applicability of our\\nframework in various AD scenarios, discuss the advantages of solving motion\\nplanning in our framework, and show the scalability limit and possible\\nsolutions.\",\"PeriodicalId\":501315,\"journal\":{\"name\":\"arXiv - CS - Multiagent Systems\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习与形式化方法(FMs)的结合为解决自动驾驶汽车(AD)的安全问题提供了可能。为了给调频和自动驾驶领域的研究人员提供便利,本文提出了一个框架,该框架结合了两个众所周知的工具,即 CommonRoad 和 UPPAAL。一方面,CommonRoad 可以通过 UPPAAL 中严格的模型语义得到增强,从而实现对 AD 系统行为的系统而全面的理解,进而加强系统的安全性。另一方面,UPPAAL合成的控制器可以通过CommonRoad在真实道路网络中进行可视化,这极大地方便了自动驾驶汽车设计人员在系统设计中采用正式模型。在这个框架中,我们提供了 CommonRoad 和 UPPAAL 之间的自动模型转换。因此,用户只需用 Python 编程,该框架就能在后台处理形式化模型、学习和验证。我们通过实验证明了我们的框架在各种 AD 场景中的适用性,讨论了在我们的框架中解决运动规划的优势,并展示了可扩展性限制和可能的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CommonUppRoad: A Framework of Formal Modelling, Verifying, Learning, and Visualisation of Autonomous Vehicles
Combining machine learning and formal methods (FMs) provides a possible solution to overcome the safety issue of autonomous driving (AD) vehicles. However, there are gaps to be bridged before this combination becomes practically applicable and useful. In an attempt to facilitate researchers in both FMs and AD areas, this paper proposes a framework that combines two well-known tools, namely CommonRoad and UPPAAL. On the one hand, CommonRoad can be enhanced by the rigorous semantics of models in UPPAAL, which enables a systematic and comprehensive understanding of the AD system's behaviour and thus strengthens the safety of the system. On the other hand, controllers synthesised by UPPAAL can be visualised by CommonRoad in real-world road networks, which facilitates AD vehicle designers greatly adopting formal models in system design. In this framework, we provide automatic model conversions between CommonRoad and UPPAAL. Therefore, users only need to program in Python and the framework takes care of the formal models, learning, and verification in the backend. We perform experiments to demonstrate the applicability of our framework in various AD scenarios, discuss the advantages of solving motion planning in our framework, and show the scalability limit and possible solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1