不锈钢 316L 的结合金属沉积:工艺变量对微观结构和机械性能的影响

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materialia Pub Date : 2024-08-01 DOI:10.1016/j.mtla.2024.102196
Animesh K. Basak , Alokesh Pramanik , Yeong X. Chen , Chander Prakash , N. Radhika , S. Shankar
{"title":"不锈钢 316L 的结合金属沉积:工艺变量对微观结构和机械性能的影响","authors":"Animesh K. Basak ,&nbsp;Alokesh Pramanik ,&nbsp;Yeong X. Chen ,&nbsp;Chander Prakash ,&nbsp;N. Radhika ,&nbsp;S. Shankar","doi":"10.1016/j.mtla.2024.102196","DOIUrl":null,"url":null,"abstract":"<div><p>The influence of printing variables on microstructural and mechanical behaviors on the 316 L stainless steel (316 L SS), produced via an additive manufacturing process, named as bound metal deposition (BMD), was investigated in this study. The printing parameters varied were infill density, diameter of the nozzle, and thickness of layers, which dictate the mechanical properties, surface roughness, and crack morphology of the samples. Based on the experimental investigation, it was found that the tensile properties were increased when the nozzle diameter and infill density were higher. The highest obtained ultimate tensile strength (UTS) was 402 ± 17 MPa, where the sample was fabricated with the following parameters: 0.40 mm nozzle diameter, 25% infill density, and 0.10 mm layer. The influence of the nozzle diameter also impacted the surface roughness, where a worse surface finish was noticed for the larger nozzle diameter.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"36 ","pages":"Article 102196"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589152924001935/pdfft?md5=17ded095dbb36747e71b07aeab1ac546&pid=1-s2.0-S2589152924001935-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bound metal deposition of stainless steel 316L: Effect of process variables on microstructural and mechanical behaviors\",\"authors\":\"Animesh K. Basak ,&nbsp;Alokesh Pramanik ,&nbsp;Yeong X. Chen ,&nbsp;Chander Prakash ,&nbsp;N. Radhika ,&nbsp;S. Shankar\",\"doi\":\"10.1016/j.mtla.2024.102196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The influence of printing variables on microstructural and mechanical behaviors on the 316 L stainless steel (316 L SS), produced via an additive manufacturing process, named as bound metal deposition (BMD), was investigated in this study. The printing parameters varied were infill density, diameter of the nozzle, and thickness of layers, which dictate the mechanical properties, surface roughness, and crack morphology of the samples. Based on the experimental investigation, it was found that the tensile properties were increased when the nozzle diameter and infill density were higher. The highest obtained ultimate tensile strength (UTS) was 402 ± 17 MPa, where the sample was fabricated with the following parameters: 0.40 mm nozzle diameter, 25% infill density, and 0.10 mm layer. The influence of the nozzle diameter also impacted the surface roughness, where a worse surface finish was noticed for the larger nozzle diameter.</p></div>\",\"PeriodicalId\":47623,\"journal\":{\"name\":\"Materialia\",\"volume\":\"36 \",\"pages\":\"Article 102196\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589152924001935/pdfft?md5=17ded095dbb36747e71b07aeab1ac546&pid=1-s2.0-S2589152924001935-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589152924001935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924001935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了印刷变量对 316 L 不锈钢(316 L SS)微观结构和机械性能的影响,该不锈钢是通过一种名为 "结合金属沉积"(BMD)的快速成型工艺生产的。打印参数包括填充密度、喷嘴直径和层厚度,这些参数决定了样品的机械性能、表面粗糙度和裂纹形态。实验研究发现,喷嘴直径和填充密度越大,拉伸性能越高。最高极限拉伸强度(UTS)为 402 ± 17 兆帕,样品的制造参数如下:喷嘴直径为 0.40 毫米,填充密度为 25%,层厚为 0.10 毫米。喷嘴直径对表面粗糙度也有影响,喷嘴直径越大,表面粗糙度越差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bound metal deposition of stainless steel 316L: Effect of process variables on microstructural and mechanical behaviors

The influence of printing variables on microstructural and mechanical behaviors on the 316 L stainless steel (316 L SS), produced via an additive manufacturing process, named as bound metal deposition (BMD), was investigated in this study. The printing parameters varied were infill density, diameter of the nozzle, and thickness of layers, which dictate the mechanical properties, surface roughness, and crack morphology of the samples. Based on the experimental investigation, it was found that the tensile properties were increased when the nozzle diameter and infill density were higher. The highest obtained ultimate tensile strength (UTS) was 402 ± 17 MPa, where the sample was fabricated with the following parameters: 0.40 mm nozzle diameter, 25% infill density, and 0.10 mm layer. The influence of the nozzle diameter also impacted the surface roughness, where a worse surface finish was noticed for the larger nozzle diameter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
期刊最新文献
Mechano-chemical competition in driven complex concentrated alloys Nucleation of recrystallization: A new approach to consider the evolution of the substructure in the system Thermoelectric properties of Bi2Te3-based prepared by directional solidification under a high magnetic field Effect of thermal history on performance of bulk metallic glass spacecraft components Multi-phase-field lattice Boltzmann modeling and simulations of semi-solid simple shear deformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1