{"title":"开发一种用纳米银颗粒修饰的新型沸石基吸附剂以去除铜绿微囊藻","authors":"Mariana Fernandes Rocha , Grace Anne Vieira Magalhães Ghiotto , Gessica Wernke , Anna Carla Ribeiro , Rosângela Bergamasco , Raquel Guttierres Gomes","doi":"10.1016/j.enmm.2024.100981","DOIUrl":null,"url":null,"abstract":"<div><p><em>Microcystis aeruginosa</em> is one of the predominant and most dangerous species responsible for cyanobacterial-harmful algal blooms (Cyano-HABs) in water bodies. Therefore, the demand for developing safe and eco-friendly solutions to control Cyano-HABs is increasing. In the present investigation, the adsorptive strategy using modified homoionic zeolites impregnated with silver nanoparticles (ZH+AgNPs) was applied to remove <em>M. aeruginosa</em> cells from aqueous phases. The adsorbent was characterized by Specific Surface Area (BET), Zeta Potential, FTIR, SEM-EDS, and DRX. By application of 0,05 g of ZH+AgNPs, a removal rate of 37 % and a removal capacity (<em>qe</em>) of 324,750 cells/g of adsorbent was achieved for cyanobacteria cells. The adsorption process obeyed the Elovich kinetic model, pointing to a chemical adsorption process, with maximal adsorption in 1000 min, removing 76 % of cells (<em>qe</em> = 547,000 cell/g). Langmuir, Freundlich, and Temkin adsorption isotherms have been investigated. This study indicates that the ZH+AgNPs can be an alternative, attractive, effective, economical, and environmentally friendly adsorbent for <em>M. aeruginosa</em> cell removal from aqueous solution for scaled-up applications.</p></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"22 ","pages":"Article 100981"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a new Zeolite-based adsorbent modified with silver nanoparticles for removal of Microcystis aeruginosa\",\"authors\":\"Mariana Fernandes Rocha , Grace Anne Vieira Magalhães Ghiotto , Gessica Wernke , Anna Carla Ribeiro , Rosângela Bergamasco , Raquel Guttierres Gomes\",\"doi\":\"10.1016/j.enmm.2024.100981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Microcystis aeruginosa</em> is one of the predominant and most dangerous species responsible for cyanobacterial-harmful algal blooms (Cyano-HABs) in water bodies. Therefore, the demand for developing safe and eco-friendly solutions to control Cyano-HABs is increasing. In the present investigation, the adsorptive strategy using modified homoionic zeolites impregnated with silver nanoparticles (ZH+AgNPs) was applied to remove <em>M. aeruginosa</em> cells from aqueous phases. The adsorbent was characterized by Specific Surface Area (BET), Zeta Potential, FTIR, SEM-EDS, and DRX. By application of 0,05 g of ZH+AgNPs, a removal rate of 37 % and a removal capacity (<em>qe</em>) of 324,750 cells/g of adsorbent was achieved for cyanobacteria cells. The adsorption process obeyed the Elovich kinetic model, pointing to a chemical adsorption process, with maximal adsorption in 1000 min, removing 76 % of cells (<em>qe</em> = 547,000 cell/g). Langmuir, Freundlich, and Temkin adsorption isotherms have been investigated. This study indicates that the ZH+AgNPs can be an alternative, attractive, effective, economical, and environmentally friendly adsorbent for <em>M. aeruginosa</em> cell removal from aqueous solution for scaled-up applications.</p></div>\",\"PeriodicalId\":11716,\"journal\":{\"name\":\"Environmental Nanotechnology, Monitoring and Management\",\"volume\":\"22 \",\"pages\":\"Article 100981\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Nanotechnology, Monitoring and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215153224000692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224000692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Development of a new Zeolite-based adsorbent modified with silver nanoparticles for removal of Microcystis aeruginosa
Microcystis aeruginosa is one of the predominant and most dangerous species responsible for cyanobacterial-harmful algal blooms (Cyano-HABs) in water bodies. Therefore, the demand for developing safe and eco-friendly solutions to control Cyano-HABs is increasing. In the present investigation, the adsorptive strategy using modified homoionic zeolites impregnated with silver nanoparticles (ZH+AgNPs) was applied to remove M. aeruginosa cells from aqueous phases. The adsorbent was characterized by Specific Surface Area (BET), Zeta Potential, FTIR, SEM-EDS, and DRX. By application of 0,05 g of ZH+AgNPs, a removal rate of 37 % and a removal capacity (qe) of 324,750 cells/g of adsorbent was achieved for cyanobacteria cells. The adsorption process obeyed the Elovich kinetic model, pointing to a chemical adsorption process, with maximal adsorption in 1000 min, removing 76 % of cells (qe = 547,000 cell/g). Langmuir, Freundlich, and Temkin adsorption isotherms have been investigated. This study indicates that the ZH+AgNPs can be an alternative, attractive, effective, economical, and environmentally friendly adsorbent for M. aeruginosa cell removal from aqueous solution for scaled-up applications.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation