Alexis Pengfei Zhao , Shuangqi Li , Da Xie , Paul Jen-Hwa Hu , Chenye Wu , Faith Xue Fei , Thomas Tongxin Li , Yue Xiang , Chenghong Gu , Zhidong Cao
{"title":"极端事件通过连带效应威胁水-能源-碳关系","authors":"Alexis Pengfei Zhao , Shuangqi Li , Da Xie , Paul Jen-Hwa Hu , Chenye Wu , Faith Xue Fei , Thomas Tongxin Li , Yue Xiang , Chenghong Gu , Zhidong Cao","doi":"10.1016/j.nxener.2024.100151","DOIUrl":null,"url":null,"abstract":"<div><p>This review studies the cascading impacts of extreme weather events on the Water-Energy-Carbon (WEC) Nexus, with a focus on their combined and sequential effects. It synthesizes research on how droughts, floods, heatwaves, hurricanes, and wildfires each initiate a chain reaction within the interconnected domains of water, energy, and carbon. Key insights include the analysis of drought impacts, like in California, where hydroelectric power's share dropped from 18% to 7%, leading to a 34%increase in emissions from natural gas plants. In Europe, flooding led to operational challenges for power plants, with a projected loss of 0.6–4.6 TWh in energy generation by 2030 due to water temperature rises. The 2023 European heatwave saw Spain's energy demand spike by 20%, driven by increased use of air conditioning, and a corresponding 15–20% rise in carbon emissions in affected countries due to greater reliance on fossil fuels. The review emphasizes the need for integrated resilience strategies, leveraging the provided quantitative data to argue for policies that address these interdependent challenges. It urges for a nuanced understanding of the WEC Nexus's dynamics to inform more effective responses to the rising tide of climate change-induced extreme weather events. Furthermore, this review expands its examination to include cases from developing countries, showcasing how their unique challenges and responses within the WEC Nexus contribute to a more comprehensive understanding of global resilience strategies against extreme weather. This review brings to the forefront the ripple effects of alterations in energy production on water resources and carbon dynamics, underscoring the critical need for a nuanced understanding and integrated approaches in managing the WEC Nexus in the face of extreme weather events.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"5 ","pages":"Article 100151"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000565/pdfft?md5=482ba2f12206e31fedd72f7d96788ed3&pid=1-s2.0-S2949821X24000565-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Extreme events threat water-energy-carbon nexus through cascading effects\",\"authors\":\"Alexis Pengfei Zhao , Shuangqi Li , Da Xie , Paul Jen-Hwa Hu , Chenye Wu , Faith Xue Fei , Thomas Tongxin Li , Yue Xiang , Chenghong Gu , Zhidong Cao\",\"doi\":\"10.1016/j.nxener.2024.100151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review studies the cascading impacts of extreme weather events on the Water-Energy-Carbon (WEC) Nexus, with a focus on their combined and sequential effects. It synthesizes research on how droughts, floods, heatwaves, hurricanes, and wildfires each initiate a chain reaction within the interconnected domains of water, energy, and carbon. Key insights include the analysis of drought impacts, like in California, where hydroelectric power's share dropped from 18% to 7%, leading to a 34%increase in emissions from natural gas plants. In Europe, flooding led to operational challenges for power plants, with a projected loss of 0.6–4.6 TWh in energy generation by 2030 due to water temperature rises. The 2023 European heatwave saw Spain's energy demand spike by 20%, driven by increased use of air conditioning, and a corresponding 15–20% rise in carbon emissions in affected countries due to greater reliance on fossil fuels. The review emphasizes the need for integrated resilience strategies, leveraging the provided quantitative data to argue for policies that address these interdependent challenges. It urges for a nuanced understanding of the WEC Nexus's dynamics to inform more effective responses to the rising tide of climate change-induced extreme weather events. Furthermore, this review expands its examination to include cases from developing countries, showcasing how their unique challenges and responses within the WEC Nexus contribute to a more comprehensive understanding of global resilience strategies against extreme weather. This review brings to the forefront the ripple effects of alterations in energy production on water resources and carbon dynamics, underscoring the critical need for a nuanced understanding and integrated approaches in managing the WEC Nexus in the face of extreme weather events.</p></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":\"5 \",\"pages\":\"Article 100151\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24000565/pdfft?md5=482ba2f12206e31fedd72f7d96788ed3&pid=1-s2.0-S2949821X24000565-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24000565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extreme events threat water-energy-carbon nexus through cascading effects
This review studies the cascading impacts of extreme weather events on the Water-Energy-Carbon (WEC) Nexus, with a focus on their combined and sequential effects. It synthesizes research on how droughts, floods, heatwaves, hurricanes, and wildfires each initiate a chain reaction within the interconnected domains of water, energy, and carbon. Key insights include the analysis of drought impacts, like in California, where hydroelectric power's share dropped from 18% to 7%, leading to a 34%increase in emissions from natural gas plants. In Europe, flooding led to operational challenges for power plants, with a projected loss of 0.6–4.6 TWh in energy generation by 2030 due to water temperature rises. The 2023 European heatwave saw Spain's energy demand spike by 20%, driven by increased use of air conditioning, and a corresponding 15–20% rise in carbon emissions in affected countries due to greater reliance on fossil fuels. The review emphasizes the need for integrated resilience strategies, leveraging the provided quantitative data to argue for policies that address these interdependent challenges. It urges for a nuanced understanding of the WEC Nexus's dynamics to inform more effective responses to the rising tide of climate change-induced extreme weather events. Furthermore, this review expands its examination to include cases from developing countries, showcasing how their unique challenges and responses within the WEC Nexus contribute to a more comprehensive understanding of global resilience strategies against extreme weather. This review brings to the forefront the ripple effects of alterations in energy production on water resources and carbon dynamics, underscoring the critical need for a nuanced understanding and integrated approaches in managing the WEC Nexus in the face of extreme weather events.