用于车辆动力学控制的双在环状态估计:理论与实验

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS IFAC Journal of Systems and Control Pub Date : 2024-07-20 DOI:10.1016/j.ifacsc.2024.100274
Giorgio Riva, Simone Formentin, Matteo Corno, Sergio M. Savaresi
{"title":"用于车辆动力学控制的双在环状态估计:理论与实验","authors":"Giorgio Riva,&nbsp;Simone Formentin,&nbsp;Matteo Corno,&nbsp;Sergio M. Savaresi","doi":"10.1016/j.ifacsc.2024.100274","DOIUrl":null,"url":null,"abstract":"<div><p>In vehicle dynamics control, many variables of interest cannot be directly measured, as sensors might be costly, fragile or even not available. Therefore, real-time estimation techniques need to be used. The previous approach suffers from two main drawbacks: (i) the approximations due to model mismatch might jeopardize the performance of the final estimation-based control; (ii) each new estimator requires the calibration from scratch of a dedicated model. In this paper, we propose a <em>twin-in-the-loop</em> scheme, where the ad-hoc model is replaced by an accurate full-fledged simulator of the vehicle, typically available to vehicles manufacturers and suitable for the estimation of any on-board variable, coupled with a compensator within a closed-loop observer scheme. Given the black-box nature of the digital twin, a data-driven methodology for observer tuning is developed, based on Bayesian optimization. The effectiveness of the proposed estimation method for the estimation of vehicle states and forces, as compared to traditional model-based Kalman filtering, is experimentally shown on a dataset collected with a sport car. In summary, the proposed approach achieves, in the most aggressive driving scenarios, an average improvement of <span><math><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mo>°</mo></mrow></math></span> for the side-slip angle estimation, and of more than <span><math><mrow><mn>500</mn></mrow></math></span> N for the front lateral forces estimation.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"29 ","pages":"Article 100274"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S246860182400035X/pdfft?md5=940de68d3c5df1f1a0aab4648da7b923&pid=1-s2.0-S246860182400035X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Twin-in-the-loop state estimation for vehicle dynamics control: Theory and experiments\",\"authors\":\"Giorgio Riva,&nbsp;Simone Formentin,&nbsp;Matteo Corno,&nbsp;Sergio M. Savaresi\",\"doi\":\"10.1016/j.ifacsc.2024.100274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In vehicle dynamics control, many variables of interest cannot be directly measured, as sensors might be costly, fragile or even not available. Therefore, real-time estimation techniques need to be used. The previous approach suffers from two main drawbacks: (i) the approximations due to model mismatch might jeopardize the performance of the final estimation-based control; (ii) each new estimator requires the calibration from scratch of a dedicated model. In this paper, we propose a <em>twin-in-the-loop</em> scheme, where the ad-hoc model is replaced by an accurate full-fledged simulator of the vehicle, typically available to vehicles manufacturers and suitable for the estimation of any on-board variable, coupled with a compensator within a closed-loop observer scheme. Given the black-box nature of the digital twin, a data-driven methodology for observer tuning is developed, based on Bayesian optimization. The effectiveness of the proposed estimation method for the estimation of vehicle states and forces, as compared to traditional model-based Kalman filtering, is experimentally shown on a dataset collected with a sport car. In summary, the proposed approach achieves, in the most aggressive driving scenarios, an average improvement of <span><math><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mo>°</mo></mrow></math></span> for the side-slip angle estimation, and of more than <span><math><mrow><mn>500</mn></mrow></math></span> N for the front lateral forces estimation.</p></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"29 \",\"pages\":\"Article 100274\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S246860182400035X/pdfft?md5=940de68d3c5df1f1a0aab4648da7b923&pid=1-s2.0-S246860182400035X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S246860182400035X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246860182400035X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在车辆动力学控制中,许多相关变量无法直接测量,因为传感器可能成本高、易损坏,甚至无法使用。因此,需要使用实时估算技术。以往的方法有两个主要缺点:(i) 模型不匹配导致的近似可能会影响最终基于估计的控制性能;(ii) 每个新的估计器都需要从头校准一个专用模型。在本文中,我们提出了一种 "双环 "方案,即用精确的车辆完整模拟器取代临时模型,该模拟器通常可供车辆制造商使用,适用于任何车载变量的估算,并与闭环观测器方案中的补偿器相结合。考虑到数字孪生系统的黑箱性质,基于贝叶斯优化,开发了一种数据驱动的观测器调整方法。与传统的基于模型的卡尔曼滤波法相比,所提出的估算方法对车辆状态和力的估算效果显著。总之,在最激烈的驾驶情况下,所提出的方法在侧滑角估计方面平均提高了 0.5°,在前侧向力估计方面平均提高了 500 N 以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Twin-in-the-loop state estimation for vehicle dynamics control: Theory and experiments

In vehicle dynamics control, many variables of interest cannot be directly measured, as sensors might be costly, fragile or even not available. Therefore, real-time estimation techniques need to be used. The previous approach suffers from two main drawbacks: (i) the approximations due to model mismatch might jeopardize the performance of the final estimation-based control; (ii) each new estimator requires the calibration from scratch of a dedicated model. In this paper, we propose a twin-in-the-loop scheme, where the ad-hoc model is replaced by an accurate full-fledged simulator of the vehicle, typically available to vehicles manufacturers and suitable for the estimation of any on-board variable, coupled with a compensator within a closed-loop observer scheme. Given the black-box nature of the digital twin, a data-driven methodology for observer tuning is developed, based on Bayesian optimization. The effectiveness of the proposed estimation method for the estimation of vehicle states and forces, as compared to traditional model-based Kalman filtering, is experimentally shown on a dataset collected with a sport car. In summary, the proposed approach achieves, in the most aggressive driving scenarios, an average improvement of 0.5° for the side-slip angle estimation, and of more than 500 N for the front lateral forces estimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
期刊最新文献
On the turnpike to design of deep neural networks: Explicit depth bounds Finite-time event-triggered tracking control for quadcopter attitude systems with zero compensation technology Efficiency criteria and dual techniques for some nonconvex multiple cost minimization models Analysis of Hyers–Ulam stability and controllability of non-linear switched impulsive systems with delays on time scales Design of fixed-time sliding mode control using variable exponents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1