Dongcheol Shin , Brian Byunghyun Kang , Wansoo Kim
{"title":"用于无级变速系统的可调节弦偏移的扭绳传动机构","authors":"Dongcheol Shin , Brian Byunghyun Kang , Wansoo Kim","doi":"10.1016/j.mechatronics.2024.103227","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel TSA mechanism with an adjustable offset between strings, which enables a variable transmission system. TSA is designed to be used in a variety of applications, including exoskeletons, and robotics. The fixed contraction range of TSAs limits their ability to provide comprehensive support. The proposed mechanism overcomes this limitation by adjusting the offset between strings. The mechanism consists of six parts with two motors. Each motor in the mechanism operates to adjust offset with only one motor and operates simultaneously to twist the strings. This enables the contraction range of TSA to be varied a wide range. Furthermore, an analytical model is also introduced for controlling the contraction range of TSA. In the experiment, the proposed mechanism shows the contraction range of TSA to be increased by up to 20%. Additionally, it showed that it is possible to vary the maximum force of TSA by up to 47%. Moreover, the analytical model has a low error. These findings suggest the promising potential for the developed TSA mechanism in a variety of applications.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"102 ","pages":"Article 103227"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twisted String Actuator mechanism with adjustable offset of strings for continuous variable transmission system\",\"authors\":\"Dongcheol Shin , Brian Byunghyun Kang , Wansoo Kim\",\"doi\":\"10.1016/j.mechatronics.2024.103227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a novel TSA mechanism with an adjustable offset between strings, which enables a variable transmission system. TSA is designed to be used in a variety of applications, including exoskeletons, and robotics. The fixed contraction range of TSAs limits their ability to provide comprehensive support. The proposed mechanism overcomes this limitation by adjusting the offset between strings. The mechanism consists of six parts with two motors. Each motor in the mechanism operates to adjust offset with only one motor and operates simultaneously to twist the strings. This enables the contraction range of TSA to be varied a wide range. Furthermore, an analytical model is also introduced for controlling the contraction range of TSA. In the experiment, the proposed mechanism shows the contraction range of TSA to be increased by up to 20%. Additionally, it showed that it is possible to vary the maximum force of TSA by up to 47%. Moreover, the analytical model has a low error. These findings suggest the promising potential for the developed TSA mechanism in a variety of applications.</p></div>\",\"PeriodicalId\":49842,\"journal\":{\"name\":\"Mechatronics\",\"volume\":\"102 \",\"pages\":\"Article 103227\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957415824000928\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824000928","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Twisted String Actuator mechanism with adjustable offset of strings for continuous variable transmission system
This paper presents a novel TSA mechanism with an adjustable offset between strings, which enables a variable transmission system. TSA is designed to be used in a variety of applications, including exoskeletons, and robotics. The fixed contraction range of TSAs limits their ability to provide comprehensive support. The proposed mechanism overcomes this limitation by adjusting the offset between strings. The mechanism consists of six parts with two motors. Each motor in the mechanism operates to adjust offset with only one motor and operates simultaneously to twist the strings. This enables the contraction range of TSA to be varied a wide range. Furthermore, an analytical model is also introduced for controlling the contraction range of TSA. In the experiment, the proposed mechanism shows the contraction range of TSA to be increased by up to 20%. Additionally, it showed that it is possible to vary the maximum force of TSA by up to 47%. Moreover, the analytical model has a low error. These findings suggest the promising potential for the developed TSA mechanism in a variety of applications.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.