基于 CNN-BLSTM 深度学习框架的真核生物动力学组分类:基于可解释性的方法

IF 2.6 4区 生物学 Q2 BIOLOGY Computational Biology and Chemistry Pub Date : 2024-08-08 DOI:10.1016/j.compbiolchem.2024.108169
Chinju John, Jayakrushna Sahoo, Irish K. Sajan, Manu Madhavan, Oommen K. Mathew
{"title":"基于 CNN-BLSTM 深度学习框架的真核生物动力学组分类:基于可解释性的方法","authors":"Chinju John,&nbsp;Jayakrushna Sahoo,&nbsp;Irish K. Sajan,&nbsp;Manu Madhavan,&nbsp;Oommen K. Mathew","doi":"10.1016/j.compbiolchem.2024.108169","DOIUrl":null,"url":null,"abstract":"<div><p>Classification of protein families from their sequences is an enduring task in Proteomics and related studies. Numerous deep-learning models have been moulded to tackle this challenge, but due to the black-box character, they still fall short in reliability. Here, we present a novel explainability pipeline that explains the pivotal decisions of the deep learning model on the classification of the Eukaryotic kinome. Based on a comparative and experimental analysis of the most cutting-edge deep learning algorithms, the best deep learning model CNN-BLSTM was chosen to classify the eight eukaryotic kinase sequences to their corresponding families. As a substitution for the conventional class activation map-based interpretation of CNN-based models in the domain, we have cascaded the GRAD CAM and Integrated Gradient (IG) explainability modus operandi for improved and responsible results. To ensure the trustworthiness of the classifier, we have masked the kinase domain traces, identified from the explainability pipeline and observed a class-specific drop in F1-score from 0.96 to 0.76. In compliance with the Explainable AI paradigm, our results are promising and contribute to enhancing the trustworthiness of deep learning models for biological sequence-associated studies.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"112 ","pages":"Article 108169"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNN-BLSTM based deep learning framework for eukaryotic kinome classification: An explainability based approach\",\"authors\":\"Chinju John,&nbsp;Jayakrushna Sahoo,&nbsp;Irish K. Sajan,&nbsp;Manu Madhavan,&nbsp;Oommen K. Mathew\",\"doi\":\"10.1016/j.compbiolchem.2024.108169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Classification of protein families from their sequences is an enduring task in Proteomics and related studies. Numerous deep-learning models have been moulded to tackle this challenge, but due to the black-box character, they still fall short in reliability. Here, we present a novel explainability pipeline that explains the pivotal decisions of the deep learning model on the classification of the Eukaryotic kinome. Based on a comparative and experimental analysis of the most cutting-edge deep learning algorithms, the best deep learning model CNN-BLSTM was chosen to classify the eight eukaryotic kinase sequences to their corresponding families. As a substitution for the conventional class activation map-based interpretation of CNN-based models in the domain, we have cascaded the GRAD CAM and Integrated Gradient (IG) explainability modus operandi for improved and responsible results. To ensure the trustworthiness of the classifier, we have masked the kinase domain traces, identified from the explainability pipeline and observed a class-specific drop in F1-score from 0.96 to 0.76. In compliance with the Explainable AI paradigm, our results are promising and contribute to enhancing the trustworthiness of deep learning models for biological sequence-associated studies.</p></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":\"112 \",\"pages\":\"Article 108169\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927124001579\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001579","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

根据蛋白质序列对蛋白质家族进行分类是蛋白质组学及相关研究中的一项长期任务。为了应对这一挑战,人们建立了大量深度学习模型,但由于其黑箱特性,这些模型在可靠性方面仍有不足。在这里,我们提出了一种新颖的可解释性管道,用于解释深度学习模型在真核生物激酶组分类中的关键决策。基于对最前沿深度学习算法的比较和实验分析,我们选择了最佳深度学习模型 CNN-BLSTM,将八个真核生物激酶序列归入其相应的家族。作为对基于 CNN 的模型在该领域中基于类激活图的传统解释的替代,我们将 GRAD CAM 和集成梯度(IG)可解释性的工作方式进行了级联,以获得更好、更负责任的结果。为了确保分类器的可信度,我们屏蔽了从可解释性管道中识别出的激酶领域踪迹,并观察到特定类别的 F1 分数从 0.96 降至 0.76。根据可解释人工智能范式,我们的研究结果很有希望,有助于提高深度学习模型在生物序列相关研究中的可信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNN-BLSTM based deep learning framework for eukaryotic kinome classification: An explainability based approach

Classification of protein families from their sequences is an enduring task in Proteomics and related studies. Numerous deep-learning models have been moulded to tackle this challenge, but due to the black-box character, they still fall short in reliability. Here, we present a novel explainability pipeline that explains the pivotal decisions of the deep learning model on the classification of the Eukaryotic kinome. Based on a comparative and experimental analysis of the most cutting-edge deep learning algorithms, the best deep learning model CNN-BLSTM was chosen to classify the eight eukaryotic kinase sequences to their corresponding families. As a substitution for the conventional class activation map-based interpretation of CNN-based models in the domain, we have cascaded the GRAD CAM and Integrated Gradient (IG) explainability modus operandi for improved and responsible results. To ensure the trustworthiness of the classifier, we have masked the kinase domain traces, identified from the explainability pipeline and observed a class-specific drop in F1-score from 0.96 to 0.76. In compliance with the Explainable AI paradigm, our results are promising and contribute to enhancing the trustworthiness of deep learning models for biological sequence-associated studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Biology and Chemistry
Computational Biology and Chemistry 生物-计算机:跨学科应用
CiteScore
6.10
自引率
3.20%
发文量
142
审稿时长
24 days
期刊介绍: Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered. Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered. Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.
期刊最新文献
Screening and computational characterization of novel antimicrobial cathelicidins from amphibian transcriptomic data Pharmacophore-guided in-silico discovery of SIRT1 inhibitors for targeted cancer therapy A multi-layer neural network approach for the stability analysis of the Hepatitis B model Unveiling the distinctive variations in multi-omics triggered by TP53 mutation in lung cancer subtypes: An insight from interaction among intratumoral microbiota, tumor microenvironment, and pathology Autoencoder-based drug synergy framework for malignant diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1