Jingchen Liu , Chaoyang Sun , Lingyun Qian , Yinghao Feng , Sinuo Xu , Yaoliang Yang
{"title":"往复旋转挤压中 LA103Z 镁锂合金的协调变形特征及其对微观结构演变的影响","authors":"Jingchen Liu , Chaoyang Sun , Lingyun Qian , Yinghao Feng , Sinuo Xu , Yaoliang Yang","doi":"10.1016/j.jmatprotec.2024.118528","DOIUrl":null,"url":null,"abstract":"<div><p>The uneven metal flow and inhomogeneous microstructure on the cross-section of the extruded bar are mainly induced by the uncoordinated deformation during the traditional extrusion process, which seriously restricts its production and application. These defects are more prominent for the dual-phase Mg-Li alloy due to the phase transformation and the difference in flow between soft and hard phases. In order to solve the uncoordinated deformation in traditional extrusion, the reciprocating rotary extrusion (R-RE) process based on harmonic oscillation of die is proposed. The experiment and numerical simulations of the reciprocating rotary extrusion process were carried out at rotating frequency of 2.5 and 5 Hz, extrusion velocity of 1 mm/s, forming temperature of 290℃, die extrusion ratio of 12 and die rotating angle of ±6°. The coordinated deformation mechanism from macroscopical flow and microstructure in reciprocating rotary extrusion was investigated deeply. Meanwhile, a novel theoretical method was proposed to describe coordinate deformation characteristics quantitatively. The results indicated that the reciprocating rotary extrusion significantly reduces the forming load and accumulates more strain. The more uniform metal flow contributes to coordinated deformation. The extrusion deformation factors are proposed to reveal the coordinated deformation mechanism. In addition, the deformation body characteristic zone is novelly divided into six zones by combination of flow pattern and microstructure evolution.</p></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"331 ","pages":"Article 118528"},"PeriodicalIF":6.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordinated deformation characteristics and its effect on microstructure evolution of LA103Z Mg-Li alloy in reciprocating rotary extrusion\",\"authors\":\"Jingchen Liu , Chaoyang Sun , Lingyun Qian , Yinghao Feng , Sinuo Xu , Yaoliang Yang\",\"doi\":\"10.1016/j.jmatprotec.2024.118528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The uneven metal flow and inhomogeneous microstructure on the cross-section of the extruded bar are mainly induced by the uncoordinated deformation during the traditional extrusion process, which seriously restricts its production and application. These defects are more prominent for the dual-phase Mg-Li alloy due to the phase transformation and the difference in flow between soft and hard phases. In order to solve the uncoordinated deformation in traditional extrusion, the reciprocating rotary extrusion (R-RE) process based on harmonic oscillation of die is proposed. The experiment and numerical simulations of the reciprocating rotary extrusion process were carried out at rotating frequency of 2.5 and 5 Hz, extrusion velocity of 1 mm/s, forming temperature of 290℃, die extrusion ratio of 12 and die rotating angle of ±6°. The coordinated deformation mechanism from macroscopical flow and microstructure in reciprocating rotary extrusion was investigated deeply. Meanwhile, a novel theoretical method was proposed to describe coordinate deformation characteristics quantitatively. The results indicated that the reciprocating rotary extrusion significantly reduces the forming load and accumulates more strain. The more uniform metal flow contributes to coordinated deformation. The extrusion deformation factors are proposed to reveal the coordinated deformation mechanism. In addition, the deformation body characteristic zone is novelly divided into six zones by combination of flow pattern and microstructure evolution.</p></div>\",\"PeriodicalId\":367,\"journal\":{\"name\":\"Journal of Materials Processing Technology\",\"volume\":\"331 \",\"pages\":\"Article 118528\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Processing Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924013624002462\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013624002462","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Coordinated deformation characteristics and its effect on microstructure evolution of LA103Z Mg-Li alloy in reciprocating rotary extrusion
The uneven metal flow and inhomogeneous microstructure on the cross-section of the extruded bar are mainly induced by the uncoordinated deformation during the traditional extrusion process, which seriously restricts its production and application. These defects are more prominent for the dual-phase Mg-Li alloy due to the phase transformation and the difference in flow between soft and hard phases. In order to solve the uncoordinated deformation in traditional extrusion, the reciprocating rotary extrusion (R-RE) process based on harmonic oscillation of die is proposed. The experiment and numerical simulations of the reciprocating rotary extrusion process were carried out at rotating frequency of 2.5 and 5 Hz, extrusion velocity of 1 mm/s, forming temperature of 290℃, die extrusion ratio of 12 and die rotating angle of ±6°. The coordinated deformation mechanism from macroscopical flow and microstructure in reciprocating rotary extrusion was investigated deeply. Meanwhile, a novel theoretical method was proposed to describe coordinate deformation characteristics quantitatively. The results indicated that the reciprocating rotary extrusion significantly reduces the forming load and accumulates more strain. The more uniform metal flow contributes to coordinated deformation. The extrusion deformation factors are proposed to reveal the coordinated deformation mechanism. In addition, the deformation body characteristic zone is novelly divided into six zones by combination of flow pattern and microstructure evolution.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.