{"title":"用可伸展双向纤维加固的弹性片材抗横向压力力学连续体模型","authors":"Wenhao Yao , Tahmid Rakin Siddiqui , Chun Il Kim","doi":"10.1016/j.ijsolstr.2024.113002","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the concurrent three-dimensional (in-plane and out-of-plane) deformations of fiber-reinforced composite (FRC) sheets undergoing lateral pressure. This involves the utilization of the Neo-Hookean strain energy model for the matrix material and computing the strain energy of bidirectional fibers by accounting for the stretching, bending, and twisting responses of the fibers. The kinematics of FRC are formulated within the framework of differential geometry on FRC surfaces, including the computations of the first and second gradient of deformation. By employing the variational principles, we derive the Euler equations describing the mechanics of the fiber–matrix composite system subjected to lateral pressure. The resulting three-dimensional continuum model theoretically predicts the deformation of the matrix material and it is found that the maximum deformation of matrix material occurs in the diagonal direction of the domain, yet, the center of the domain suffers weak in-plane deformation because of surface tension equilibrium. In addition, the stretching, bending, and twisting kinematics of fiber units are computed to investigate the effects of the individual fiber’s kinematics on the overall deformation of fiber meshwork. Lastly, it is found that the lateral pressure on the FRC surface induces fiber flexure in the vicinity of domain boundaries and fiber stretch inside the domain, corresponding to the intensified shrinking strain near the edges and stretching strain in the middle of the domain. The theoretical results provide phenomenologically meaningful insights into comprehending the damage patterns of the fiber-reinforced building material, the hemispherical dome shaping results of bamboo Poly (lactic) acid (PLA) composites and the out-of-plane deformation of woven fabric.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"303 ","pages":"Article 113002"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A continuum model for the mechanics of elastomeric sheets reinforced with extensible bidirectional fibers resistant to lateral pressure\",\"authors\":\"Wenhao Yao , Tahmid Rakin Siddiqui , Chun Il Kim\",\"doi\":\"10.1016/j.ijsolstr.2024.113002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the concurrent three-dimensional (in-plane and out-of-plane) deformations of fiber-reinforced composite (FRC) sheets undergoing lateral pressure. This involves the utilization of the Neo-Hookean strain energy model for the matrix material and computing the strain energy of bidirectional fibers by accounting for the stretching, bending, and twisting responses of the fibers. The kinematics of FRC are formulated within the framework of differential geometry on FRC surfaces, including the computations of the first and second gradient of deformation. By employing the variational principles, we derive the Euler equations describing the mechanics of the fiber–matrix composite system subjected to lateral pressure. The resulting three-dimensional continuum model theoretically predicts the deformation of the matrix material and it is found that the maximum deformation of matrix material occurs in the diagonal direction of the domain, yet, the center of the domain suffers weak in-plane deformation because of surface tension equilibrium. In addition, the stretching, bending, and twisting kinematics of fiber units are computed to investigate the effects of the individual fiber’s kinematics on the overall deformation of fiber meshwork. Lastly, it is found that the lateral pressure on the FRC surface induces fiber flexure in the vicinity of domain boundaries and fiber stretch inside the domain, corresponding to the intensified shrinking strain near the edges and stretching strain in the middle of the domain. The theoretical results provide phenomenologically meaningful insights into comprehending the damage patterns of the fiber-reinforced building material, the hemispherical dome shaping results of bamboo Poly (lactic) acid (PLA) composites and the out-of-plane deformation of woven fabric.</p></div>\",\"PeriodicalId\":14311,\"journal\":{\"name\":\"International Journal of Solids and Structures\",\"volume\":\"303 \",\"pages\":\"Article 113002\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020768324003615\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324003615","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
A continuum model for the mechanics of elastomeric sheets reinforced with extensible bidirectional fibers resistant to lateral pressure
We investigate the concurrent three-dimensional (in-plane and out-of-plane) deformations of fiber-reinforced composite (FRC) sheets undergoing lateral pressure. This involves the utilization of the Neo-Hookean strain energy model for the matrix material and computing the strain energy of bidirectional fibers by accounting for the stretching, bending, and twisting responses of the fibers. The kinematics of FRC are formulated within the framework of differential geometry on FRC surfaces, including the computations of the first and second gradient of deformation. By employing the variational principles, we derive the Euler equations describing the mechanics of the fiber–matrix composite system subjected to lateral pressure. The resulting three-dimensional continuum model theoretically predicts the deformation of the matrix material and it is found that the maximum deformation of matrix material occurs in the diagonal direction of the domain, yet, the center of the domain suffers weak in-plane deformation because of surface tension equilibrium. In addition, the stretching, bending, and twisting kinematics of fiber units are computed to investigate the effects of the individual fiber’s kinematics on the overall deformation of fiber meshwork. Lastly, it is found that the lateral pressure on the FRC surface induces fiber flexure in the vicinity of domain boundaries and fiber stretch inside the domain, corresponding to the intensified shrinking strain near the edges and stretching strain in the middle of the domain. The theoretical results provide phenomenologically meaningful insights into comprehending the damage patterns of the fiber-reinforced building material, the hemispherical dome shaping results of bamboo Poly (lactic) acid (PLA) composites and the out-of-plane deformation of woven fabric.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.