Chengzhen Jia , Hua Geng , Yushan Liu , Lingmei Wang , Enlong Meng , Jiwen Ji , Zhengkun Chen , Lei Han , Liming Chen , Dongjie Guo , Jiye Liang , Yinping Fenghong
{"title":"全风速范围内大型陆上风力涡轮机的线性主动干扰抑制控制","authors":"Chengzhen Jia , Hua Geng , Yushan Liu , Lingmei Wang , Enlong Meng , Jiwen Ji , Zhengkun Chen , Lei Han , Liming Chen , Dongjie Guo , Jiye Liang , Yinping Fenghong","doi":"10.1016/j.conengprac.2024.106038","DOIUrl":null,"url":null,"abstract":"<div><p>To achieve real-time estimation and compensation of total system disturbances and improve the control performance of wind turbines under complex turbulent wind conditions, three one-order LADRCs were used to reconstruct the wind turbine core control system. A dynamic variable limit LADRC was designed for torque control, a minimum limit LADRC was applied in pitch control, and a LADRC power controller was designed for decoupling torque and pitch control. The stability of the LADRCs was proven using the Lyapunov method. According to the transfer function of wind turbines and empirical equations, the parameters of each LADRC were tuned. Based on the hardware-in-loop simulation (HILS) test platform, the control algorithm of look-up table, PID, RISC, and LADRC were constructed by PLC language. Through comparative studies, it was verified that the algorithm proposed in this paper can reduce generator rotor speed and power fluctuations by about 13.6% and 1.7% at least, and it can also reduce the blade root load force.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"151 ","pages":"Article 106038"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0967066124001977/pdfft?md5=3e03d6dcc8abbdd3a16767e3a422d19b&pid=1-s2.0-S0967066124001977-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Linear active disturbance rejection control for large onshore wind turbines in full wind speed range\",\"authors\":\"Chengzhen Jia , Hua Geng , Yushan Liu , Lingmei Wang , Enlong Meng , Jiwen Ji , Zhengkun Chen , Lei Han , Liming Chen , Dongjie Guo , Jiye Liang , Yinping Fenghong\",\"doi\":\"10.1016/j.conengprac.2024.106038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To achieve real-time estimation and compensation of total system disturbances and improve the control performance of wind turbines under complex turbulent wind conditions, three one-order LADRCs were used to reconstruct the wind turbine core control system. A dynamic variable limit LADRC was designed for torque control, a minimum limit LADRC was applied in pitch control, and a LADRC power controller was designed for decoupling torque and pitch control. The stability of the LADRCs was proven using the Lyapunov method. According to the transfer function of wind turbines and empirical equations, the parameters of each LADRC were tuned. Based on the hardware-in-loop simulation (HILS) test platform, the control algorithm of look-up table, PID, RISC, and LADRC were constructed by PLC language. Through comparative studies, it was verified that the algorithm proposed in this paper can reduce generator rotor speed and power fluctuations by about 13.6% and 1.7% at least, and it can also reduce the blade root load force.</p></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"151 \",\"pages\":\"Article 106038\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0967066124001977/pdfft?md5=3e03d6dcc8abbdd3a16767e3a422d19b&pid=1-s2.0-S0967066124001977-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124001977\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124001977","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Linear active disturbance rejection control for large onshore wind turbines in full wind speed range
To achieve real-time estimation and compensation of total system disturbances and improve the control performance of wind turbines under complex turbulent wind conditions, three one-order LADRCs were used to reconstruct the wind turbine core control system. A dynamic variable limit LADRC was designed for torque control, a minimum limit LADRC was applied in pitch control, and a LADRC power controller was designed for decoupling torque and pitch control. The stability of the LADRCs was proven using the Lyapunov method. According to the transfer function of wind turbines and empirical equations, the parameters of each LADRC were tuned. Based on the hardware-in-loop simulation (HILS) test platform, the control algorithm of look-up table, PID, RISC, and LADRC were constructed by PLC language. Through comparative studies, it was verified that the algorithm proposed in this paper can reduce generator rotor speed and power fluctuations by about 13.6% and 1.7% at least, and it can also reduce the blade root load force.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.