通过界面工程提升 PEDOT.PSS/Bi2Te3 混合薄膜的热电性能通过结构和界面工程提升 PEDOT: PSS/Bi2Te3 混合薄膜的热电性能

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Organic Electronics Pub Date : 2024-08-06 DOI:10.1016/j.orgel.2024.107103
Vaishali Rathi , Kamal Singh , K.P.S. Parmar , Ranjeet K. Brajpuriya , Ashish Kumar
{"title":"通过界面工程提升 PEDOT.PSS/Bi2Te3 混合薄膜的热电性能通过结构和界面工程提升 PEDOT: PSS/Bi2Te3 混合薄膜的热电性能","authors":"Vaishali Rathi ,&nbsp;Kamal Singh ,&nbsp;K.P.S. Parmar ,&nbsp;Ranjeet K. Brajpuriya ,&nbsp;Ashish Kumar","doi":"10.1016/j.orgel.2024.107103","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we synthesized poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS) and PEDOT: PSS/Bi<sub>2</sub>Te<sub>3</sub> hybrid composite film using a spin coating method. The maximum Seebeck coefficient (22 μVK<sup>−1</sup>) and power factor (57.18 μWm<sup>-1</sup> K<sup>−2</sup> around 300 K) were achieved at 0.4 wt% Bi<sub>2</sub>Te<sub>3</sub>. The electrical conductivity (σ) reached a maximum of 1467 Scm<sup>−1</sup> at 300 K for 0.6 wt% Bi<sub>2</sub>Te<sub>3</sub>, which is more than three times higher than that of pure PEDOT: PSS. Two critical components contribute to the improved electrical transport performance, as identified by XRD, Raman spectroscopy, XPS, AFM, and SEM. First, the conductive polymer undergoes a structural transformation from a benzenoid to a quinoid configuration, enhancing conductivity. This transformation is due to the interaction between the π bonds of PEDOT: PSS and the Van der Waals forces between the tellurium (Te) atom layers of Bi<sub>2</sub>Te<sub>3</sub>. Second, the interfacial barrier between PEDOT: PSS and Bi<sub>2</sub>Te<sub>3</sub> creates an energy-filtering effect that increases the Seebeck coefficient.</p></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"133 ","pages":"Article 107103"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting thermoelectric performance of PEDOT: PSS/Bi2Te3 hybrid films via structural and interfacial engineering\",\"authors\":\"Vaishali Rathi ,&nbsp;Kamal Singh ,&nbsp;K.P.S. Parmar ,&nbsp;Ranjeet K. Brajpuriya ,&nbsp;Ashish Kumar\",\"doi\":\"10.1016/j.orgel.2024.107103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we synthesized poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS) and PEDOT: PSS/Bi<sub>2</sub>Te<sub>3</sub> hybrid composite film using a spin coating method. The maximum Seebeck coefficient (22 μVK<sup>−1</sup>) and power factor (57.18 μWm<sup>-1</sup> K<sup>−2</sup> around 300 K) were achieved at 0.4 wt% Bi<sub>2</sub>Te<sub>3</sub>. The electrical conductivity (σ) reached a maximum of 1467 Scm<sup>−1</sup> at 300 K for 0.6 wt% Bi<sub>2</sub>Te<sub>3</sub>, which is more than three times higher than that of pure PEDOT: PSS. Two critical components contribute to the improved electrical transport performance, as identified by XRD, Raman spectroscopy, XPS, AFM, and SEM. First, the conductive polymer undergoes a structural transformation from a benzenoid to a quinoid configuration, enhancing conductivity. This transformation is due to the interaction between the π bonds of PEDOT: PSS and the Van der Waals forces between the tellurium (Te) atom layers of Bi<sub>2</sub>Te<sub>3</sub>. Second, the interfacial barrier between PEDOT: PSS and Bi<sub>2</sub>Te<sub>3</sub> creates an energy-filtering effect that increases the Seebeck coefficient.</p></div>\",\"PeriodicalId\":399,\"journal\":{\"name\":\"Organic Electronics\",\"volume\":\"133 \",\"pages\":\"Article 107103\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566119924001149\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001149","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们采用旋涂法合成了聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸)(PEDOT: PSS)和 PEDOT:PSS/Bi2Te3 混合复合薄膜。0.4 wt% Bi2Te3 的塞贝克系数(22 μVK-1)和功率因数(57.18 μWm-1 K-2 ,300 K 左右)达到了最大值。0.6 wt% Bi2Te3 的导电率(σ)在 300 K 时达到最大值 1467 Scm-1,比纯 PEDOT:PSS 的三倍。通过 XRD、拉曼光谱、XPS、原子力显微镜和扫描电子显微镜(SEM)可以发现,有两个关键成分促成了电气传输性能的提高。首先,导电聚合物发生了结构转变,从苯并构型转变为醌并构型,从而提高了导电性。这种转变是由于 PEDOT:PSS 的 π 键与 Bi2Te3 的碲 (Te) 原子层之间的范德华力之间的相互作用。其次,PEDOT:PSS 和 Bi2Te3 之间的界面屏障产生了能量过滤效应,从而提高了塞贝克系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boosting thermoelectric performance of PEDOT: PSS/Bi2Te3 hybrid films via structural and interfacial engineering

In this work, we synthesized poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS) and PEDOT: PSS/Bi2Te3 hybrid composite film using a spin coating method. The maximum Seebeck coefficient (22 μVK−1) and power factor (57.18 μWm-1 K−2 around 300 K) were achieved at 0.4 wt% Bi2Te3. The electrical conductivity (σ) reached a maximum of 1467 Scm−1 at 300 K for 0.6 wt% Bi2Te3, which is more than three times higher than that of pure PEDOT: PSS. Two critical components contribute to the improved electrical transport performance, as identified by XRD, Raman spectroscopy, XPS, AFM, and SEM. First, the conductive polymer undergoes a structural transformation from a benzenoid to a quinoid configuration, enhancing conductivity. This transformation is due to the interaction between the π bonds of PEDOT: PSS and the Van der Waals forces between the tellurium (Te) atom layers of Bi2Te3. Second, the interfacial barrier between PEDOT: PSS and Bi2Te3 creates an energy-filtering effect that increases the Seebeck coefficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
期刊最新文献
Synthesis and application of dithieno[3,2-b:2′,3′-d]thiophene conjugated copolymer for organic field effect transistors and nitrogen dioxide sensors Evaluation of thermal effects on natural organic honey memristive thin film for resistive switching memory applications Navigating the relationship between voltage losses and efficiency in organic solar cells Effect of various parameters on sorting semiconducting carbon nanotubes using polyfluorene for high-performance field-effect transistors Photo- and electroluminescent properties of V-shaped fused-biscoumarins containing tert-butyl group modified imidazole/carbazole groups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1