Rui Fu , Xiao Han , Chenchen Jing , Hao Mao , Yueling Guo , Lin Tang , Changmeng Liu , Hongshuai Lei
{"title":"线弧定向能量沉积无支撑铝合金晶格支柱连续成型的热输入调整工艺","authors":"Rui Fu , Xiao Han , Chenchen Jing , Hao Mao , Yueling Guo , Lin Tang , Changmeng Liu , Hongshuai Lei","doi":"10.1016/j.jmatprotec.2024.118550","DOIUrl":null,"url":null,"abstract":"<div><p>Metal lattice structures with lightweight and multifunctionality characteristics have attracted increasing attention in recent years owing to their good mechanical properties, which can further be improved by applying nanoparticle-modified aluminum alloys to lattice structures. However, current manufacturing technologies limit the development of large-size and complex aluminum alloy lattice structures. Herein, a novel unsupported additive manufacturing method based on wire arc-directed energy deposition (WA-DED) was explored for the fabrication of lattice structures. This method realized the continuous forming of unsupported lattice struts by controlling the arc heat input based on the established theoretical models. The models consisted of a heat transfer model taking into account both heat conduction and heat convection for molten pool temperature stabilization, as well as a force model to ensure molten pool force stabilization. Process windows of heat input of unsupported struts were then developed based on the theoretical models followed by validation by numerical simulation. Unsupported nanoparticle-modified aluminum alloy lattice struts with different diameters and angles were fabricated using WA-DED technology, which exhibited refined microstructures with grain sizes smaller than 20 μm and excellent mechanical properties with ultimate strengths and breaking elongation exceeding 400 MPa and 7 %, respectively. Finally, high-quality pyramid lattice structures were efficiently fabricated using the unsupported additive manufacturing method. Overall, the proposed method fills the gap in the efficient preparation of large-size aluminum alloy lattice structures. The developed model can also broadly be extended to the unsupported additive manufacturing of other materials, such as titanium, steel, and magnesium alloys.</p></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"332 ","pages":"Article 118550"},"PeriodicalIF":6.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat input adjustment process for unsupported aluminum alloy lattice struts continuous forming by wire arc-directed energy deposition\",\"authors\":\"Rui Fu , Xiao Han , Chenchen Jing , Hao Mao , Yueling Guo , Lin Tang , Changmeng Liu , Hongshuai Lei\",\"doi\":\"10.1016/j.jmatprotec.2024.118550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal lattice structures with lightweight and multifunctionality characteristics have attracted increasing attention in recent years owing to their good mechanical properties, which can further be improved by applying nanoparticle-modified aluminum alloys to lattice structures. However, current manufacturing technologies limit the development of large-size and complex aluminum alloy lattice structures. Herein, a novel unsupported additive manufacturing method based on wire arc-directed energy deposition (WA-DED) was explored for the fabrication of lattice structures. This method realized the continuous forming of unsupported lattice struts by controlling the arc heat input based on the established theoretical models. The models consisted of a heat transfer model taking into account both heat conduction and heat convection for molten pool temperature stabilization, as well as a force model to ensure molten pool force stabilization. Process windows of heat input of unsupported struts were then developed based on the theoretical models followed by validation by numerical simulation. Unsupported nanoparticle-modified aluminum alloy lattice struts with different diameters and angles were fabricated using WA-DED technology, which exhibited refined microstructures with grain sizes smaller than 20 μm and excellent mechanical properties with ultimate strengths and breaking elongation exceeding 400 MPa and 7 %, respectively. Finally, high-quality pyramid lattice structures were efficiently fabricated using the unsupported additive manufacturing method. Overall, the proposed method fills the gap in the efficient preparation of large-size aluminum alloy lattice structures. The developed model can also broadly be extended to the unsupported additive manufacturing of other materials, such as titanium, steel, and magnesium alloys.</p></div>\",\"PeriodicalId\":367,\"journal\":{\"name\":\"Journal of Materials Processing Technology\",\"volume\":\"332 \",\"pages\":\"Article 118550\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Processing Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924013624002681\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013624002681","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Heat input adjustment process for unsupported aluminum alloy lattice struts continuous forming by wire arc-directed energy deposition
Metal lattice structures with lightweight and multifunctionality characteristics have attracted increasing attention in recent years owing to their good mechanical properties, which can further be improved by applying nanoparticle-modified aluminum alloys to lattice structures. However, current manufacturing technologies limit the development of large-size and complex aluminum alloy lattice structures. Herein, a novel unsupported additive manufacturing method based on wire arc-directed energy deposition (WA-DED) was explored for the fabrication of lattice structures. This method realized the continuous forming of unsupported lattice struts by controlling the arc heat input based on the established theoretical models. The models consisted of a heat transfer model taking into account both heat conduction and heat convection for molten pool temperature stabilization, as well as a force model to ensure molten pool force stabilization. Process windows of heat input of unsupported struts were then developed based on the theoretical models followed by validation by numerical simulation. Unsupported nanoparticle-modified aluminum alloy lattice struts with different diameters and angles were fabricated using WA-DED technology, which exhibited refined microstructures with grain sizes smaller than 20 μm and excellent mechanical properties with ultimate strengths and breaking elongation exceeding 400 MPa and 7 %, respectively. Finally, high-quality pyramid lattice structures were efficiently fabricated using the unsupported additive manufacturing method. Overall, the proposed method fills the gap in the efficient preparation of large-size aluminum alloy lattice structures. The developed model can also broadly be extended to the unsupported additive manufacturing of other materials, such as titanium, steel, and magnesium alloys.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.