Ke Ni, Jing Chen, Jian Wang, Bo Liu, Ting Lei, Yongtian Wang
{"title":"基于特征分解的凝视估计与辅助头部姿态回归","authors":"Ke Ni, Jing Chen, Jian Wang, Bo Liu, Ting Lei, Yongtian Wang","doi":"10.1016/j.patrec.2024.07.021","DOIUrl":null,"url":null,"abstract":"<div><p>Recognition and understanding of facial images or eye images are critical for eye tracking. Recent studies have shown that the simultaneous use of facial and eye images can effectively lower gaze errors. However, these methods typically consider facial and eye images as two unrelated inputs, without taking into account their distinct representational abilities at the feature level. Additionally, implicitly learned head pose from highly coupled facial features would make the trained model less interpretable and prone to the gaze-head overfitting problem. To address these issues, we propose a method that aims to enhance task-relevant features while suppressing other noises by leveraging feature decomposition. We disentangle eye-related features from the facial image via a projection module and further make them distinctive with an attention-based head pose regression task, which could enhance the representation of gaze-related features and make the model less susceptible to task-irrelevant features. After that, the mutually separated eye features and head pose are recombined to achieve more accurate gaze estimation. Experimental results demonstrate that our method achieves state-of-the-art performance, with an estimation error of 3.90° on the MPIIGaze dataset and 5.15° error on the EyeDiap dataset, respectively.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"185 ","pages":"Pages 137-142"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature decomposition-based gaze estimation with auxiliary head pose regression\",\"authors\":\"Ke Ni, Jing Chen, Jian Wang, Bo Liu, Ting Lei, Yongtian Wang\",\"doi\":\"10.1016/j.patrec.2024.07.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recognition and understanding of facial images or eye images are critical for eye tracking. Recent studies have shown that the simultaneous use of facial and eye images can effectively lower gaze errors. However, these methods typically consider facial and eye images as two unrelated inputs, without taking into account their distinct representational abilities at the feature level. Additionally, implicitly learned head pose from highly coupled facial features would make the trained model less interpretable and prone to the gaze-head overfitting problem. To address these issues, we propose a method that aims to enhance task-relevant features while suppressing other noises by leveraging feature decomposition. We disentangle eye-related features from the facial image via a projection module and further make them distinctive with an attention-based head pose regression task, which could enhance the representation of gaze-related features and make the model less susceptible to task-irrelevant features. After that, the mutually separated eye features and head pose are recombined to achieve more accurate gaze estimation. Experimental results demonstrate that our method achieves state-of-the-art performance, with an estimation error of 3.90° on the MPIIGaze dataset and 5.15° error on the EyeDiap dataset, respectively.</p></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"185 \",\"pages\":\"Pages 137-142\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524002241\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002241","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Feature decomposition-based gaze estimation with auxiliary head pose regression
Recognition and understanding of facial images or eye images are critical for eye tracking. Recent studies have shown that the simultaneous use of facial and eye images can effectively lower gaze errors. However, these methods typically consider facial and eye images as two unrelated inputs, without taking into account their distinct representational abilities at the feature level. Additionally, implicitly learned head pose from highly coupled facial features would make the trained model less interpretable and prone to the gaze-head overfitting problem. To address these issues, we propose a method that aims to enhance task-relevant features while suppressing other noises by leveraging feature decomposition. We disentangle eye-related features from the facial image via a projection module and further make them distinctive with an attention-based head pose regression task, which could enhance the representation of gaze-related features and make the model less susceptible to task-irrelevant features. After that, the mutually separated eye features and head pose are recombined to achieve more accurate gaze estimation. Experimental results demonstrate that our method achieves state-of-the-art performance, with an estimation error of 3.90° on the MPIIGaze dataset and 5.15° error on the EyeDiap dataset, respectively.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.