基于合成条件控制用于二氧化碳捕获的掺氮沸石模板碳的结构

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED Microporous and Mesoporous Materials Pub Date : 2024-08-05 DOI:10.1016/j.micromeso.2024.113286
{"title":"基于合成条件控制用于二氧化碳捕获的掺氮沸石模板碳的结构","authors":"","doi":"10.1016/j.micromeso.2024.113286","DOIUrl":null,"url":null,"abstract":"<div><p>The surface chemistry and the textural properties of nitrogen-doped zeolite-templated carbon materials (N-ZTC) are decisive for their functionality in CO<sub>2</sub> capture. This study analyses how the synthesis conditions affect the structure, formation of N-containing functional groups, thermal stability and CO<sub>2</sub> capture of N-ZTC in comparison with nitrogen-free ZTC. Faujasite as a hard template and chemical vapour depositions (CVD) with propene and acetonitrile were used for the synthesis of ZTC and N-ZTC, respectively. XRD, SEM, N<sub>2</sub> and CO<sub>2</sub> sorption, XPS and TG/DSC analyses showed that the structural ordering and microporous volume in N-ZTC increases with increasing synthesis temperature. Conversely, at higher temperatures, the content of basic pyridinic groups in N-ZTC decreases in favour of stable graphitic nitrogen. The Lewis acid−base interaction of CO<sub>2</sub> with the pyridinic groups provides the highest adsorption heats, the highest affinity for CO<sub>2</sub> compared to N<sub>2</sub> and enhances CO<sub>2</sub>/N<sub>2</sub> selectivity (CO<sub>2</sub>/N<sub>2</sub> selectivities of 127, 95, 89, and 66 for N-ZTC<sub>750°C</sub>, N-ZTC<sub>800°C</sub>, N-ZTC<sub>850°C</sub> and ZTC, respectively). The maximum adsorption capacity was achieved for N-ZTC<sub>800°C</sub> still yielding a high content of basic groups and a larger micropore volume compared to N-ZTC<sub>750°C</sub>. The decisive factor for the selectivity is thus the presence of basic centers attainable in N-ZTC at a lower synthesis temperature. The maximum adsorption capacity is associated with a large microporous volume and basic centers in N-ZTC synthesized at medium temperatures. The energy of CO<sub>2</sub> adsorption by Lewis acid−base interactions and well-developed micropores are decisive for high selectivity and large adsorption capacity for efficient CO<sub>2</sub> capture using N-ZTC materials.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling the structure of nitrogen-doped zeolite-templated carbon for CO2 capture based on the synthesis conditions\",\"authors\":\"\",\"doi\":\"10.1016/j.micromeso.2024.113286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The surface chemistry and the textural properties of nitrogen-doped zeolite-templated carbon materials (N-ZTC) are decisive for their functionality in CO<sub>2</sub> capture. This study analyses how the synthesis conditions affect the structure, formation of N-containing functional groups, thermal stability and CO<sub>2</sub> capture of N-ZTC in comparison with nitrogen-free ZTC. Faujasite as a hard template and chemical vapour depositions (CVD) with propene and acetonitrile were used for the synthesis of ZTC and N-ZTC, respectively. XRD, SEM, N<sub>2</sub> and CO<sub>2</sub> sorption, XPS and TG/DSC analyses showed that the structural ordering and microporous volume in N-ZTC increases with increasing synthesis temperature. Conversely, at higher temperatures, the content of basic pyridinic groups in N-ZTC decreases in favour of stable graphitic nitrogen. The Lewis acid−base interaction of CO<sub>2</sub> with the pyridinic groups provides the highest adsorption heats, the highest affinity for CO<sub>2</sub> compared to N<sub>2</sub> and enhances CO<sub>2</sub>/N<sub>2</sub> selectivity (CO<sub>2</sub>/N<sub>2</sub> selectivities of 127, 95, 89, and 66 for N-ZTC<sub>750°C</sub>, N-ZTC<sub>800°C</sub>, N-ZTC<sub>850°C</sub> and ZTC, respectively). The maximum adsorption capacity was achieved for N-ZTC<sub>800°C</sub> still yielding a high content of basic groups and a larger micropore volume compared to N-ZTC<sub>750°C</sub>. The decisive factor for the selectivity is thus the presence of basic centers attainable in N-ZTC at a lower synthesis temperature. The maximum adsorption capacity is associated with a large microporous volume and basic centers in N-ZTC synthesized at medium temperatures. The energy of CO<sub>2</sub> adsorption by Lewis acid−base interactions and well-developed micropores are decisive for high selectivity and large adsorption capacity for efficient CO<sub>2</sub> capture using N-ZTC materials.</p></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181124003081\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003081","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

掺氮沸石模板碳材料(N-ZTC)的表面化学性质和纹理特性对其捕获二氧化碳的功能起着决定性作用。与不含氮的 ZTC 相比,本研究分析了合成条件如何影响 N-ZTC 的结构、含氮官能团的形成、热稳定性和二氧化碳捕获。研究分别采用了硬模板浮石棉和丙烯与乙腈的化学气相沉积(CVD)技术合成 ZTC 和 N-ZTC。XRD、SEM、N2 和 CO2 吸附、XPS 和 TG/DSC 分析表明,N-ZTC 的结构有序度和微孔体积随着合成温度的升高而增加。相反,在较高温度下,N-ZTC 中碱性吡啶基团的含量减少,有利于稳定的石墨氮。二氧化碳与吡啶基的路易斯酸碱相互作用提供了最高的吸附热,与 N2 相比,对 CO2 的亲和力最高,并提高了 CO2/N2 的选择性(N-ZTC750°C、N-ZTC800°C、N-ZTC850°C 和 ZTC 的 CO2/N2 选择性分别为 127、95、89 和 66)。与 N-ZTC750°C 相比,N-ZTC800°C 仍具有较高的碱性基团含量和较大的微孔体积,因此吸附能力最大。因此,选择性的决定性因素是在较低的合成温度下 N-ZTC 中碱性中心的存在。在中温合成的 N-ZTC 中,最大吸附容量与较大的微孔体积和碱性中心有关。路易斯酸碱相互作用产生的二氧化碳吸附能量和发达的微孔是使用 N-ZTC 材料高效捕获二氧化碳的高选择性和大吸附容量的决定性因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controlling the structure of nitrogen-doped zeolite-templated carbon for CO2 capture based on the synthesis conditions

The surface chemistry and the textural properties of nitrogen-doped zeolite-templated carbon materials (N-ZTC) are decisive for their functionality in CO2 capture. This study analyses how the synthesis conditions affect the structure, formation of N-containing functional groups, thermal stability and CO2 capture of N-ZTC in comparison with nitrogen-free ZTC. Faujasite as a hard template and chemical vapour depositions (CVD) with propene and acetonitrile were used for the synthesis of ZTC and N-ZTC, respectively. XRD, SEM, N2 and CO2 sorption, XPS and TG/DSC analyses showed that the structural ordering and microporous volume in N-ZTC increases with increasing synthesis temperature. Conversely, at higher temperatures, the content of basic pyridinic groups in N-ZTC decreases in favour of stable graphitic nitrogen. The Lewis acid−base interaction of CO2 with the pyridinic groups provides the highest adsorption heats, the highest affinity for CO2 compared to N2 and enhances CO2/N2 selectivity (CO2/N2 selectivities of 127, 95, 89, and 66 for N-ZTC750°C, N-ZTC800°C, N-ZTC850°C and ZTC, respectively). The maximum adsorption capacity was achieved for N-ZTC800°C still yielding a high content of basic groups and a larger micropore volume compared to N-ZTC750°C. The decisive factor for the selectivity is thus the presence of basic centers attainable in N-ZTC at a lower synthesis temperature. The maximum adsorption capacity is associated with a large microporous volume and basic centers in N-ZTC synthesized at medium temperatures. The energy of CO2 adsorption by Lewis acid−base interactions and well-developed micropores are decisive for high selectivity and large adsorption capacity for efficient CO2 capture using N-ZTC materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
期刊最新文献
Water in the micropores of CPO-27 metal-organic frameworks: A comprehensive study A pyrene-based hydrogen-bonded framework with excimer induced ratiometric emission for discriminative luminescence detection of metal ions Rich active sites ZIF-8 base on imidazole-based deep eutectic solvents for rapid adsorption of acid fuchsin and competitive adsorption Fabrication of core-shell structural Y@VTMS-DVB composites with enhanced hydrophobicity for toluene capture under humid environment Interfacial dynamics of Al3+ ions and water on hydrophilic adsorbents: A molecular dynamics study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1