约瑟夫森行波参数放大器建模的多物理场数值方法

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-07-15 DOI:10.1109/JMMCT.2024.3428344
Samuel T. Elkin;Michael Haider;Thomas E. Roth
{"title":"约瑟夫森行波参数放大器建模的多物理场数值方法","authors":"Samuel T. Elkin;Michael Haider;Thomas E. Roth","doi":"10.1109/JMMCT.2024.3428344","DOIUrl":null,"url":null,"abstract":"Josephson traveling-wave parametric amplifiers (JTWPAs) are wideband, ultralow-noise amplifiers used to enable the readout of superconducting qubits. While individual JTWPAs have achieved high performance, behavior between devices is inconsistent due to wide manufacturing tolerances. Amplifier designs could be modified to improve resilience towards variations in amplifier components; however, existing device models often rely on analytical techniques that typically fail to incorporate component variations. To begin addressing this issue, a 1D numerical method for modeling JTWPAs is introduced in this work. The method treats the Josephson junctions and transmission lines in an amplifier as coupled subsystems and can easily incorporate arbitrary parameter variations. We discretize the transmission line subsystem with a finite element time domain method and the Josephson junction subsystem with a finite difference method, with leap-frog time marching used to evolve the system in time. We validate our method by comparing the computed gain to an analytical model for a traditional JTWPA architecture and one with resonant phase matching. We then use our method to demonstrate the impact of variations in Josephson junctions and phase-matching resonators on amplification. In future work, the method will be adjusted to incorporate additional amplifier architectures and extended to a 3D full-wave approach.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiphysics Numerical Method for Modeling Josephson Traveling-Wave Parametric Amplifiers\",\"authors\":\"Samuel T. Elkin;Michael Haider;Thomas E. Roth\",\"doi\":\"10.1109/JMMCT.2024.3428344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Josephson traveling-wave parametric amplifiers (JTWPAs) are wideband, ultralow-noise amplifiers used to enable the readout of superconducting qubits. While individual JTWPAs have achieved high performance, behavior between devices is inconsistent due to wide manufacturing tolerances. Amplifier designs could be modified to improve resilience towards variations in amplifier components; however, existing device models often rely on analytical techniques that typically fail to incorporate component variations. To begin addressing this issue, a 1D numerical method for modeling JTWPAs is introduced in this work. The method treats the Josephson junctions and transmission lines in an amplifier as coupled subsystems and can easily incorporate arbitrary parameter variations. We discretize the transmission line subsystem with a finite element time domain method and the Josephson junction subsystem with a finite difference method, with leap-frog time marching used to evolve the system in time. We validate our method by comparing the computed gain to an analytical model for a traditional JTWPA architecture and one with resonant phase matching. We then use our method to demonstrate the impact of variations in Josephson junctions and phase-matching resonators on amplification. In future work, the method will be adjusted to incorporate additional amplifier architectures and extended to a 3D full-wave approach.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10598315/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10598315/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

约瑟夫森行波参量放大器(JTWPA)是一种宽带、超低噪声放大器,用于实现超导量子比特的读出。虽然单个 JTWPA 已经实现了高性能,但由于制造公差较大,器件之间的行为并不一致。放大器的设计可以进行修改,以提高对放大器元件变化的适应能力;然而,现有的器件模型通常依赖于分析技术,而分析技术通常无法纳入元件变化。为了着手解决这一问题,本文介绍了一种用于 JTWPA 建模的一维数值方法。该方法将放大器中的约瑟夫森结和传输线视为耦合子系统,可轻松纳入任意参数变化。我们用有限元时域法对传输线子系统进行离散化,用有限差分法对约瑟夫森结子系统进行离散化,并用跃迁时间行进法对系统进行时间演化。我们将计算增益与传统 JTWPA 架构和具有谐振相位匹配的架构的分析模型进行比较,从而验证我们的方法。然后,我们用我们的方法演示了约瑟夫森结和相位匹配谐振器的变化对放大的影响。在未来的工作中,我们将对该方法进行调整,以纳入更多的放大器架构,并扩展到三维全波方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiphysics Numerical Method for Modeling Josephson Traveling-Wave Parametric Amplifiers
Josephson traveling-wave parametric amplifiers (JTWPAs) are wideband, ultralow-noise amplifiers used to enable the readout of superconducting qubits. While individual JTWPAs have achieved high performance, behavior between devices is inconsistent due to wide manufacturing tolerances. Amplifier designs could be modified to improve resilience towards variations in amplifier components; however, existing device models often rely on analytical techniques that typically fail to incorporate component variations. To begin addressing this issue, a 1D numerical method for modeling JTWPAs is introduced in this work. The method treats the Josephson junctions and transmission lines in an amplifier as coupled subsystems and can easily incorporate arbitrary parameter variations. We discretize the transmission line subsystem with a finite element time domain method and the Josephson junction subsystem with a finite difference method, with leap-frog time marching used to evolve the system in time. We validate our method by comparing the computed gain to an analytical model for a traditional JTWPA architecture and one with resonant phase matching. We then use our method to demonstrate the impact of variations in Josephson junctions and phase-matching resonators on amplification. In future work, the method will be adjusted to incorporate additional amplifier architectures and extended to a 3D full-wave approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Drift-Correcting Multiphysics Informed Neural Network Coupled PDE Solver An Indefinite Impedance Matrix Technique for Efficient Analysis of Planar Circuits With Irregular Shapes A New Electro-Thermal Simulation Approach for Moving Electromagnetic Rail Launchers Computational Electromagnetics Meets Spin Qubits: Controlling Noise Effects in Quantum Sensing and Computing Multiphysics Model of Thomson-Coil Actuators With Closed-Form Inductance Formulas and Comprehensive Mechanical Interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1