基于 GAN 隐私保护的异构集合联盟学习

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Sustainable Computing Pub Date : 2024-01-05 DOI:10.1109/TSUSC.2024.3350040
Meng Chen;Hengzhu Liu;Huanhuan Chi;Ping Xiong
{"title":"基于 GAN 隐私保护的异构集合联盟学习","authors":"Meng Chen;Hengzhu Liu;Huanhuan Chi;Ping Xiong","doi":"10.1109/TSUSC.2024.3350040","DOIUrl":null,"url":null,"abstract":"Multi-party collaborative learning has become a paradigm for large-scale knowledge discovery in the era of Big Data. As a typical form of collaborative learning, federated learning (FL) has received widespread research attention in recent years. In practice, however, FL faces a range of challenges such as objective inconsistency, communication and synchronization issues, due to the heterogeneity in the clients’ local datasets and devices. In this paper, we propose EnsembleFed, a novel ensemble framework for heterogeneous FL. The proposed framework first allows each client to train a local model with full autonomy and without having to consider the heterogeneity of local datasets. The confidence scores of training samples output by each local model are then perturbed to defend against membership inference attacks, after which they are submitted to the server for use in constructing the global model. We apply a GAN-based method to generate calibrated noise for confidence perturbation. Benefiting from the ensemble framework, EnsembleFed disengages from the restriction of real-time synchronization and achieves collaborative learning with lower communication costs than traditional FL. Experiments on real-world datasets demonstrate that the proposed EnsembleFed can significantly improve the performance of the global model while also effectively defending against membership inference attacks.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 4","pages":"591-601"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous Ensemble Federated Learning With GAN-Based Privacy Preservation\",\"authors\":\"Meng Chen;Hengzhu Liu;Huanhuan Chi;Ping Xiong\",\"doi\":\"10.1109/TSUSC.2024.3350040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-party collaborative learning has become a paradigm for large-scale knowledge discovery in the era of Big Data. As a typical form of collaborative learning, federated learning (FL) has received widespread research attention in recent years. In practice, however, FL faces a range of challenges such as objective inconsistency, communication and synchronization issues, due to the heterogeneity in the clients’ local datasets and devices. In this paper, we propose EnsembleFed, a novel ensemble framework for heterogeneous FL. The proposed framework first allows each client to train a local model with full autonomy and without having to consider the heterogeneity of local datasets. The confidence scores of training samples output by each local model are then perturbed to defend against membership inference attacks, after which they are submitted to the server for use in constructing the global model. We apply a GAN-based method to generate calibrated noise for confidence perturbation. Benefiting from the ensemble framework, EnsembleFed disengages from the restriction of real-time synchronization and achieves collaborative learning with lower communication costs than traditional FL. Experiments on real-world datasets demonstrate that the proposed EnsembleFed can significantly improve the performance of the global model while also effectively defending against membership inference attacks.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"9 4\",\"pages\":\"591-601\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10381738/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10381738/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

多方协作学习已成为大数据时代大规模知识发现的一种范式。作为协作学习的一种典型形式,联合学习(FL)近年来受到了广泛的研究关注。但在实际应用中,由于客户端本地数据集和设备的异构性,联盟学习面临着目标不一致、通信和同步问题等一系列挑战。在本文中,我们提出了用于异构 FL 的新型集合框架 EnsembleFed。该框架首先允许每个客户端完全自主地训练本地模型,而无需考虑本地数据集的异质性。然后,对每个本地模型输出的训练样本的置信度分数进行扰动,以抵御成员推理攻击,之后将其提交给服务器,用于构建全局模型。我们采用一种基于 GAN 的方法来生成用于置信度扰动的校准噪声。得益于集合框架,EnsembleFed 摆脱了实时同步的限制,并以比传统 FL 更低的通信成本实现了协作学习。在实际数据集上的实验证明,所提出的 EnsembleFed 能显著提高全局模型的性能,同时还能有效抵御成员推理攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heterogeneous Ensemble Federated Learning With GAN-Based Privacy Preservation
Multi-party collaborative learning has become a paradigm for large-scale knowledge discovery in the era of Big Data. As a typical form of collaborative learning, federated learning (FL) has received widespread research attention in recent years. In practice, however, FL faces a range of challenges such as objective inconsistency, communication and synchronization issues, due to the heterogeneity in the clients’ local datasets and devices. In this paper, we propose EnsembleFed, a novel ensemble framework for heterogeneous FL. The proposed framework first allows each client to train a local model with full autonomy and without having to consider the heterogeneity of local datasets. The confidence scores of training samples output by each local model are then perturbed to defend against membership inference attacks, after which they are submitted to the server for use in constructing the global model. We apply a GAN-based method to generate calibrated noise for confidence perturbation. Benefiting from the ensemble framework, EnsembleFed disengages from the restriction of real-time synchronization and achieves collaborative learning with lower communication costs than traditional FL. Experiments on real-world datasets demonstrate that the proposed EnsembleFed can significantly improve the performance of the global model while also effectively defending against membership inference attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
期刊最新文献
Editorial Dynamic Event-Triggered State Estimation for Power Harmonics With Quantization Effects: A Zonotopic Set-Membership Approach 2024 Reviewers List Deadline-Aware Cost and Energy Efficient Offloading in Mobile Edge Computing Impacts of Increasing Temperature and Relative Humidity in Air-Cooled Tropical Data Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1