基于一维卷积神经网络的微带带通滤波器高效几何参数优化方法

IF 0.9 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of RF and Microwave Computer-Aided Engineering Pub Date : 2024-07-23 DOI:10.1155/2024/5524054
Yang Gao, Danyang Wang, Huilong Yu, Tao Hua, Ning Hou, Yapeng Lu
{"title":"基于一维卷积神经网络的微带带通滤波器高效几何参数优化方法","authors":"Yang Gao,&nbsp;Danyang Wang,&nbsp;Huilong Yu,&nbsp;Tao Hua,&nbsp;Ning Hou,&nbsp;Yapeng Lu","doi":"10.1155/2024/5524054","DOIUrl":null,"url":null,"abstract":"<p>Machine learning-assisted electromagnetic simulation has become an effective acceleration tool for designing microwave components by introducing high-precision models and optimization algorithms, featuring fast design and high efficiency. However, enormous amount of data generated from the blind preliminary and computationally expensive simulation is required to predict the accuracy response. An efficient geometric parameter optimization method for microstrip bandpass filter (BPF) based on a one-dimensional convolutional neural network is proposed. Nonlinear convergence factor, adaptive weight, and Gaussian difference mutation strategies are integrated using the whale optimization algorithm to avoid the local optimum and improve optimization accuracy. Computational efficiency is improved significantly with small-scale training data. The validity and efficiency of the proposed method are confirmed by fifth-order microstrip BPFs, and the performance of the predicted structure parameters is significantly improved, which shows great promise for application in optimization and performance improvement in microwave electromagnetic simulation.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5524054","citationCount":"0","resultStr":"{\"title\":\"An Efficient Geometric Parameter Optimization Method for Microstrip Bandpass Filter Based on One-Dimensional Convolutional Neural Network\",\"authors\":\"Yang Gao,&nbsp;Danyang Wang,&nbsp;Huilong Yu,&nbsp;Tao Hua,&nbsp;Ning Hou,&nbsp;Yapeng Lu\",\"doi\":\"10.1155/2024/5524054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Machine learning-assisted electromagnetic simulation has become an effective acceleration tool for designing microwave components by introducing high-precision models and optimization algorithms, featuring fast design and high efficiency. However, enormous amount of data generated from the blind preliminary and computationally expensive simulation is required to predict the accuracy response. An efficient geometric parameter optimization method for microstrip bandpass filter (BPF) based on a one-dimensional convolutional neural network is proposed. Nonlinear convergence factor, adaptive weight, and Gaussian difference mutation strategies are integrated using the whale optimization algorithm to avoid the local optimum and improve optimization accuracy. Computational efficiency is improved significantly with small-scale training data. The validity and efficiency of the proposed method are confirmed by fifth-order microstrip BPFs, and the performance of the predicted structure parameters is significantly improved, which shows great promise for application in optimization and performance improvement in microwave electromagnetic simulation.</p>\",\"PeriodicalId\":54944,\"journal\":{\"name\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5524054\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5524054\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5524054","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

通过引入高精度模型和优化算法,机器学习辅助电磁仿真已成为设计微波元件的有效加速工具,具有设计速度快、效率高等特点。然而,要预测准确的响应,需要通过盲目的初步仿真和计算昂贵的仿真产生大量数据。本文提出了一种基于一维卷积神经网络的高效微带带通滤波器(BPF)几何参数优化方法。利用鲸鱼优化算法整合了非线性收敛因子、自适应权重和高斯差突变策略,以避免局部最优并提高优化精度。在使用小规模训练数据时,计算效率明显提高。五阶微带 BPF 验证了所提方法的有效性和高效性,预测的结构参数性能显著提高,在微波电磁仿真的优化和性能改进方面具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Geometric Parameter Optimization Method for Microstrip Bandpass Filter Based on One-Dimensional Convolutional Neural Network

Machine learning-assisted electromagnetic simulation has become an effective acceleration tool for designing microwave components by introducing high-precision models and optimization algorithms, featuring fast design and high efficiency. However, enormous amount of data generated from the blind preliminary and computationally expensive simulation is required to predict the accuracy response. An efficient geometric parameter optimization method for microstrip bandpass filter (BPF) based on a one-dimensional convolutional neural network is proposed. Nonlinear convergence factor, adaptive weight, and Gaussian difference mutation strategies are integrated using the whale optimization algorithm to avoid the local optimum and improve optimization accuracy. Computational efficiency is improved significantly with small-scale training data. The validity and efficiency of the proposed method are confirmed by fifth-order microstrip BPFs, and the performance of the predicted structure parameters is significantly improved, which shows great promise for application in optimization and performance improvement in microwave electromagnetic simulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
23.50%
发文量
489
审稿时长
3 months
期刊介绍: International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology. Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . . -Computer-Aided Modeling -Computer-Aided Analysis -Computer-Aided Optimization -Software and Manufacturing Techniques -Computer-Aided Measurements -Measurements Interfaced with CAD Systems In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.
期刊最新文献
A Fast Electromagnetic Radiation Simulation Tool for Finite Periodic Array Antenna and Universal Array Antenna A Broadband RCS Reduction Coating Using a Novel Arrangement of Metasurface Unit Cells Based on Two Substrates BNN-LSTM-DE Surrogate Model–Assisted Antenna Optimization Method Based on Data Selection A Spaceborne Ka-Band Earth-Coverage Phased Array Antenna Based on DBF-Shared Subarray for LEO Communications A Wideband High-Efficiency Dual-Polarized Metal-Only Reflectarray Antenna Using Folded Groove Elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1