高层建筑群的变形监测:结合卫星图像和持久散射干涉测量法获取变形系数

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Structural Control & Health Monitoring Pub Date : 2024-07-30 DOI:10.1155/2024/2326106
Yun Zhou, Jianwei Chen, Guanwang Hao, Shiqi Zhu
{"title":"高层建筑群的变形监测:结合卫星图像和持久散射干涉测量法获取变形系数","authors":"Yun Zhou,&nbsp;Jianwei Chen,&nbsp;Guanwang Hao,&nbsp;Shiqi Zhu","doi":"10.1155/2024/2326106","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Persistent Scatterer Interferometry (PSI) is a remote sensing measurement technology based on electromagnetic waves, capable of simultaneously monitoring deformations in large urban building complexes with millimeter-level precision. However, relying solely on the line of sight (LOS) deformation sequence based on a specific permanent scatterer cannot accurately analyze building deformations, particularly in cases where high-rise buildings may simultaneously experience various deformation components such as temperature-induced deformation, shrinkage, creep, and tilting. To accurately identify the deformation states of high-rise buildings, the paper begins by systematically summarizing three typical deformation patterns from the unique perspective of synthetic aperture radar (SAR) satellites. These patterns include Pattern I, characterized by temperature-induced deformation alone, and Pattern II and Pattern III, which involve a combination of deformation in different directions relative to the SAR satellite in addition to temperature-induced deformation. To accurately monitor the LOS deformation of high-rise buildings, the paper introduces the concept of acquiring the evolutionary trends of temperature-related deformation coefficients and proposes a methodology for recognizing and quantifying deformation in high-rise buildings. Subsequently, this study utilized freely available Sentinel-1 satellite data to observe the deformation of nine high-rise buildings in Changsha, China. The research findings indicate that the thermal expansion coefficients of most high-rise buildings fall within the range of 6 ∼ 12 × 10<sup>−6</sup>/°C. High-rise buildings that have been constructed for more than ten years almost no longer experience significant shrinkage or creep, while new constructions may exhibit an initial shrinkage and creep of up to 1.2 × 10<sup>−4</sup> mm/mm. Additionally, the study results demonstrate that super-tall buildings may exhibit centimeter-scale lateral deformations at their tops due to uneven shrinkage. Findings from the study indicate that the proposed method can achieve cost-effective and sustainable deformation monitoring of high-rise building clusters within a large urban area.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2326106","citationCount":"0","resultStr":"{\"title\":\"Deformation Monitoring of High-Rise Building Clusters: Acquiring Deformation Coefficients by Combining Satellite Imagery and Persistent Scatterer Interferometry\",\"authors\":\"Yun Zhou,&nbsp;Jianwei Chen,&nbsp;Guanwang Hao,&nbsp;Shiqi Zhu\",\"doi\":\"10.1155/2024/2326106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Persistent Scatterer Interferometry (PSI) is a remote sensing measurement technology based on electromagnetic waves, capable of simultaneously monitoring deformations in large urban building complexes with millimeter-level precision. However, relying solely on the line of sight (LOS) deformation sequence based on a specific permanent scatterer cannot accurately analyze building deformations, particularly in cases where high-rise buildings may simultaneously experience various deformation components such as temperature-induced deformation, shrinkage, creep, and tilting. To accurately identify the deformation states of high-rise buildings, the paper begins by systematically summarizing three typical deformation patterns from the unique perspective of synthetic aperture radar (SAR) satellites. These patterns include Pattern I, characterized by temperature-induced deformation alone, and Pattern II and Pattern III, which involve a combination of deformation in different directions relative to the SAR satellite in addition to temperature-induced deformation. To accurately monitor the LOS deformation of high-rise buildings, the paper introduces the concept of acquiring the evolutionary trends of temperature-related deformation coefficients and proposes a methodology for recognizing and quantifying deformation in high-rise buildings. Subsequently, this study utilized freely available Sentinel-1 satellite data to observe the deformation of nine high-rise buildings in Changsha, China. The research findings indicate that the thermal expansion coefficients of most high-rise buildings fall within the range of 6 ∼ 12 × 10<sup>−6</sup>/°C. High-rise buildings that have been constructed for more than ten years almost no longer experience significant shrinkage or creep, while new constructions may exhibit an initial shrinkage and creep of up to 1.2 × 10<sup>−4</sup> mm/mm. Additionally, the study results demonstrate that super-tall buildings may exhibit centimeter-scale lateral deformations at their tops due to uneven shrinkage. Findings from the study indicate that the proposed method can achieve cost-effective and sustainable deformation monitoring of high-rise building clusters within a large urban area.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2326106\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/2326106\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/2326106","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

持久散射体干涉测量法(PSI)是一种基于电磁波的遥感测量技术,能够以毫米级的精度同时监测大型城市建筑群的变形。然而,仅仅依靠基于特定永久散射体的视线(LOS)变形序列无法准确分析建筑物的变形,尤其是在高层建筑可能同时经历温度引起的变形、收缩、蠕变和倾斜等多种变形成分的情况下。为了准确识别高层建筑的变形状态,本文首先从合成孔径雷达 (SAR) 卫星的独特视角出发,系统地总结了三种典型的变形模式。这些模式包括模式 I(仅以温度引起的形变为特征),以及模式 II 和模式 III(除温度引起的形变外,还涉及相对于合成孔径雷达卫星的不同方向的形变组合)。为了准确监测高层建筑的 LOS 变形,本文引入了获取与温度相关的变形系数演变趋势的概念,并提出了一种识别和量化高层建筑变形的方法。随后,本研究利用免费提供的 "哨兵一号 "卫星数据,观测了中国长沙九栋高层建筑的变形情况。研究结果表明,大多数高层建筑的热膨胀系数在 6 ∼ 12 × 10-6/°C 之间。建成十年以上的高层建筑几乎不再出现明显的收缩或蠕变,而新建建筑的初始收缩和蠕变可能高达 1.2 × 10-4 mm/mm。此外,研究结果表明,由于不均匀收缩,超高层建筑的顶部可能会出现厘米级的横向变形。研究结果表明,所提出的方法可以对大型城市区域内的高层建筑群落进行成本效益高且可持续的变形监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deformation Monitoring of High-Rise Building Clusters: Acquiring Deformation Coefficients by Combining Satellite Imagery and Persistent Scatterer Interferometry

Persistent Scatterer Interferometry (PSI) is a remote sensing measurement technology based on electromagnetic waves, capable of simultaneously monitoring deformations in large urban building complexes with millimeter-level precision. However, relying solely on the line of sight (LOS) deformation sequence based on a specific permanent scatterer cannot accurately analyze building deformations, particularly in cases where high-rise buildings may simultaneously experience various deformation components such as temperature-induced deformation, shrinkage, creep, and tilting. To accurately identify the deformation states of high-rise buildings, the paper begins by systematically summarizing three typical deformation patterns from the unique perspective of synthetic aperture radar (SAR) satellites. These patterns include Pattern I, characterized by temperature-induced deformation alone, and Pattern II and Pattern III, which involve a combination of deformation in different directions relative to the SAR satellite in addition to temperature-induced deformation. To accurately monitor the LOS deformation of high-rise buildings, the paper introduces the concept of acquiring the evolutionary trends of temperature-related deformation coefficients and proposes a methodology for recognizing and quantifying deformation in high-rise buildings. Subsequently, this study utilized freely available Sentinel-1 satellite data to observe the deformation of nine high-rise buildings in Changsha, China. The research findings indicate that the thermal expansion coefficients of most high-rise buildings fall within the range of 6 ∼ 12 × 10−6/°C. High-rise buildings that have been constructed for more than ten years almost no longer experience significant shrinkage or creep, while new constructions may exhibit an initial shrinkage and creep of up to 1.2 × 10−4 mm/mm. Additionally, the study results demonstrate that super-tall buildings may exhibit centimeter-scale lateral deformations at their tops due to uneven shrinkage. Findings from the study indicate that the proposed method can achieve cost-effective and sustainable deformation monitoring of high-rise building clusters within a large urban area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
期刊最新文献
Vision Transformer–Based Anomaly Detection Method for Offshore Platform Monitoring Data Investigation of the Mechanism of Hidden Defects in Epoxy Asphalt Pavement on Steel Bridge Decks Under Moisture Diffusion Using Nondestructive Detection Techniques Multidamage Detection of Breathing Cracks in Plate-Like Bridges: Experimental and Numerical Study Designing a Distributed Sensing Network for Structural Health Monitoring of Concrete Tunnels: A Case Study Detection of Delamination in Composite Laminate Using Mode Shape Processing Method and YOLOv8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1