GaN HEMT 的改进型非线性 I-V 模型

IF 0.9 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of RF and Microwave Computer-Aided Engineering Pub Date : 2024-07-31 DOI:10.1155/2024/8834864
Qingyu Yuan, Yixin Zhang, Xiaodong Luan, Jun Zhang, Chunxu Xie, Jiali Cheng
{"title":"GaN HEMT 的改进型非线性 I-V 模型","authors":"Qingyu Yuan,&nbsp;Yixin Zhang,&nbsp;Xiaodong Luan,&nbsp;Jun Zhang,&nbsp;Chunxu Xie,&nbsp;Jiali Cheng","doi":"10.1155/2024/8834864","DOIUrl":null,"url":null,"abstract":"<p>In this article, an improved nonlinear model for gallium nitride high-electron-mobility transistors (GaN HEMTs) is proposed. Aiming at the problem of insufficient accuracy of the nonlinear DC model caused by the self-heating effect and trap effect in the traditional model, this thesis uses the Softplus function to improve the traditional nonlinear DC model and establishes a nonlinear DC model including the self-heating effect, which is verified by the three GaN HEMT devices of different sizes. The MSE of <i>I</i><sub>ds</sub> is less than 2.44 × 10<sup>−6</sup>. The traditional empirical basis model needs to calculate the partial derivative of the current expression with respect to <i>V</i><sub>ds</sub>, which is tedious and complicated. The proposed model can be directly used to fit the <i>G</i><sub><i>m</i></sub>. The verification results show that the MSE of the <i>G</i><sub><i>m</i></sub> is less than 1.07 × 10<sup>−4</sup>, which proves the effectiveness of the equation.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8834864","citationCount":"0","resultStr":"{\"title\":\"An Improved Nonlinear I-V Model for GaN HEMTs\",\"authors\":\"Qingyu Yuan,&nbsp;Yixin Zhang,&nbsp;Xiaodong Luan,&nbsp;Jun Zhang,&nbsp;Chunxu Xie,&nbsp;Jiali Cheng\",\"doi\":\"10.1155/2024/8834864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, an improved nonlinear model for gallium nitride high-electron-mobility transistors (GaN HEMTs) is proposed. Aiming at the problem of insufficient accuracy of the nonlinear DC model caused by the self-heating effect and trap effect in the traditional model, this thesis uses the Softplus function to improve the traditional nonlinear DC model and establishes a nonlinear DC model including the self-heating effect, which is verified by the three GaN HEMT devices of different sizes. The MSE of <i>I</i><sub>ds</sub> is less than 2.44 × 10<sup>−6</sup>. The traditional empirical basis model needs to calculate the partial derivative of the current expression with respect to <i>V</i><sub>ds</sub>, which is tedious and complicated. The proposed model can be directly used to fit the <i>G</i><sub><i>m</i></sub>. The verification results show that the MSE of the <i>G</i><sub><i>m</i></sub> is less than 1.07 × 10<sup>−4</sup>, which proves the effectiveness of the equation.</p>\",\"PeriodicalId\":54944,\"journal\":{\"name\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8834864\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/8834864\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8834864","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种改进的氮化镓高电子迁移率晶体管(GaN HEMT)非线性模型。针对传统模型中自热效应和陷阱效应导致的非线性直流模型精度不足的问题,本文利用 Softplus 函数改进了传统的非线性直流模型,建立了包含自热效应的非线性直流模型,并通过三个不同尺寸的 GaN HEMT 器件进行了验证。Ids 的 MSE 小于 2.44 × 10-6。传统的经验基础模型需要计算电流表达式相对于 Vds 的偏导数,既繁琐又复杂。所提出的模型可直接用于拟合 Gm。验证结果表明,Gm 的 MSE 小于 1.07 × 10-4,这证明了方程的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improved Nonlinear I-V Model for GaN HEMTs

In this article, an improved nonlinear model for gallium nitride high-electron-mobility transistors (GaN HEMTs) is proposed. Aiming at the problem of insufficient accuracy of the nonlinear DC model caused by the self-heating effect and trap effect in the traditional model, this thesis uses the Softplus function to improve the traditional nonlinear DC model and establishes a nonlinear DC model including the self-heating effect, which is verified by the three GaN HEMT devices of different sizes. The MSE of Ids is less than 2.44 × 10−6. The traditional empirical basis model needs to calculate the partial derivative of the current expression with respect to Vds, which is tedious and complicated. The proposed model can be directly used to fit the Gm. The verification results show that the MSE of the Gm is less than 1.07 × 10−4, which proves the effectiveness of the equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
23.50%
发文量
489
审稿时长
3 months
期刊介绍: International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology. Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . . -Computer-Aided Modeling -Computer-Aided Analysis -Computer-Aided Optimization -Software and Manufacturing Techniques -Computer-Aided Measurements -Measurements Interfaced with CAD Systems In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.
期刊最新文献
Numerical Analysis of Therapeutic Effects by Varying Slot Numbers and Slot-to-Slot Distance in Microwave Ablation Using Multislot Coaxial Antenna Study of Electromagnetic Radiation From High-Speed Train Voice and Data Antennae on the Health of Pacemaker Wearers Miniaturize Dual-Band Open-Loop Resonator-Based MIMO Antenna With Wide Bandwidth and High Gain Multifunctional Frequency-Selective Rasorber With Passband Stealth Performance A 10 × 10 MIMO Multiband Broadband Planar Antenna for Multiband Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1