生物编码器:用于生物体比较生物学的计量学习工具包。

IF 7.6 1区 环境科学与生态学 Q1 ECOLOGY Ecology Letters Pub Date : 2024-08-13 DOI:10.1111/ele.14495
Moritz D. Lürig, Emanuela Di Martino, Arthur Porto
{"title":"生物编码器:用于生物体比较生物学的计量学习工具包。","authors":"Moritz D. Lürig,&nbsp;Emanuela Di Martino,&nbsp;Arthur Porto","doi":"10.1111/ele.14495","DOIUrl":null,"url":null,"abstract":"<p>In the realm of biological image analysis, deep learning (DL) has become a core toolkit, for example for segmentation and classification. However, conventional DL methods are challenged by large biodiversity datasets characterized by unbalanced classes and hard-to-distinguish phenotypic differences between them. Here we present BioEncoder, a user-friendly toolkit for metric learning, which overcomes these challenges by focussing on learning relationships between individual data points rather than on the separability of classes. BioEncoder is released as a Python package, created for ease of use and flexibility across diverse datasets. It features taxon-agnostic data loaders, custom augmentation options, and simple hyperparameter adjustments through text-based configuration files. The toolkit's significance lies in its potential to unlock new research avenues in biological image analysis while democratizing access to advanced deep metric learning techniques. BioEncoder focuses on the urgent need for toolkits bridging the gap between complex DL pipelines and practical applications in biological research.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 8","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14495","citationCount":"0","resultStr":"{\"title\":\"BioEncoder: A metric learning toolkit for comparative organismal biology\",\"authors\":\"Moritz D. Lürig,&nbsp;Emanuela Di Martino,&nbsp;Arthur Porto\",\"doi\":\"10.1111/ele.14495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the realm of biological image analysis, deep learning (DL) has become a core toolkit, for example for segmentation and classification. However, conventional DL methods are challenged by large biodiversity datasets characterized by unbalanced classes and hard-to-distinguish phenotypic differences between them. Here we present BioEncoder, a user-friendly toolkit for metric learning, which overcomes these challenges by focussing on learning relationships between individual data points rather than on the separability of classes. BioEncoder is released as a Python package, created for ease of use and flexibility across diverse datasets. It features taxon-agnostic data loaders, custom augmentation options, and simple hyperparameter adjustments through text-based configuration files. The toolkit's significance lies in its potential to unlock new research avenues in biological image analysis while democratizing access to advanced deep metric learning techniques. BioEncoder focuses on the urgent need for toolkits bridging the gap between complex DL pipelines and practical applications in biological research.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"27 8\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14495\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.14495\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14495","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在生物图像分析领域,深度学习(DL)已成为一种核心工具包,例如用于分割和分类。然而,传统的深度学习方法面临着大型生物多样性数据集的挑战,这些数据集的特点是类间不平衡和难以区分的表型差异。在此,我们提出了 BioEncoder,这是一个用户友好的度量学习工具包,它通过重点学习单个数据点之间的关系而不是类的可分离性来克服这些挑战。BioEncoder 以 Python 软件包的形式发布,易于使用,在各种数据集上都具有灵活性。它的特点包括分类学数据加载器、自定义增强选项,以及通过基于文本的配置文件进行简单的超参数调整。该工具包的重要意义在于,它有可能为生物图像分析开辟新的研究途径,同时实现先进的深度度量学习技术的平民化。BioEncoder 关注的是在复杂的 DL 管道和生物研究的实际应用之间架起桥梁的工具包的迫切需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BioEncoder: A metric learning toolkit for comparative organismal biology

In the realm of biological image analysis, deep learning (DL) has become a core toolkit, for example for segmentation and classification. However, conventional DL methods are challenged by large biodiversity datasets characterized by unbalanced classes and hard-to-distinguish phenotypic differences between them. Here we present BioEncoder, a user-friendly toolkit for metric learning, which overcomes these challenges by focussing on learning relationships between individual data points rather than on the separability of classes. BioEncoder is released as a Python package, created for ease of use and flexibility across diverse datasets. It features taxon-agnostic data loaders, custom augmentation options, and simple hyperparameter adjustments through text-based configuration files. The toolkit's significance lies in its potential to unlock new research avenues in biological image analysis while democratizing access to advanced deep metric learning techniques. BioEncoder focuses on the urgent need for toolkits bridging the gap between complex DL pipelines and practical applications in biological research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
期刊最新文献
The Impact of Microbial Interactions on Ecosystem Function Intensifies Under Stress Mycorrhizal Types Regulate Tree Spatial Associations in Temperate Forests: Ectomycorrhizal Trees Might Favour Species Coexistence Acclimation Unifies the Scaling of Carbon Assimilation Across Climate Gradients and Levels of Organisation Seasonally Changing Interactions of Species Traits of Termites and Trees Promote Complementarity in Coarse Wood Decomposition Seasonality Structures Avian Functional Diversity and Niche Packing Across North America
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1