Aleksandra Romaniuk-Drapala, Paulina Skupin-Mrugalska, Olga Garbuzenko, Arash Hatefi, Tamara Minko
{"title":"奥拉帕利和托泊替康脂质体制剂在原发性上皮卵巢癌细胞中的协同抗肿瘤作用","authors":"Aleksandra Romaniuk-Drapala, Paulina Skupin-Mrugalska, Olga Garbuzenko, Arash Hatefi, Tamara Minko","doi":"10.1186/s12935-024-03469-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Olaparib is a PARP inhibitor inducing synthetic lethality in tumors with deficient homologous recombination (HRD) caused by BRCA1/2 mutations. The FDA has approved monotherapy for first-line platinum-sensitive, recurrent high-grade epithelial ovarian cancer. Combination therapy alongside DNA-damaging therapeutics is a promising solution to overcome the limited efficacy in patients with HRD. The present study was designed to develop topotecan- and olaparib-loaded liposomes (TLL and OLL) and assess the effectiveness of their combination in patient-derived ovarian cancer samples.</p><p><strong>Methods: </strong>We used HEOC, four clear-cell tumors (EOC 1-4), malignant ascites, and an OCI-E1p endometrioid primary ovarian cancer cell line and performed NGS analysis of BRCA1/2 mutation status. Antiproliferative activity was determined with the MTT assay. The Chou-Talalay algorithm was used to investigate the in vitro pharmacodynamic interactions of TLLs and OLLs.</p><p><strong>Results: </strong>The OLL showed significantly higher efficacy in all ovarian cancer types with wild-type BRCA1/2 than a conventional formulation, suggesting potential for increased in vivo efficacy. The TLL revealed substantially higher toxicity to EOC 1, EOC 3, ascites and lower toxicity to HEOC than the standard formulation, suggesting better therapeutic efficacy and safety profile. The combination of studied compounds showed a higher reduction in cell viability than drugs used individually, demonstrating a synergistic antitumor effect at most of the selected concentrations.</p><p><strong>Conclusions: </strong>The concentration-dependent response of different ovarian cancer cell types to combination therapy confirms the need for in vitro optimization to maximize drug cytotoxicity. The OLL and TLL combination is a promising formulation for further animal studies, especially for eliminating epithelial ovarian cancer with wild-type BRCA1/2.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320834/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synergistic antitumor effect of liposomal-based formulations of olaparib and topotecan in primary epithelial ovarian cancer cells.\",\"authors\":\"Aleksandra Romaniuk-Drapala, Paulina Skupin-Mrugalska, Olga Garbuzenko, Arash Hatefi, Tamara Minko\",\"doi\":\"10.1186/s12935-024-03469-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Olaparib is a PARP inhibitor inducing synthetic lethality in tumors with deficient homologous recombination (HRD) caused by BRCA1/2 mutations. The FDA has approved monotherapy for first-line platinum-sensitive, recurrent high-grade epithelial ovarian cancer. Combination therapy alongside DNA-damaging therapeutics is a promising solution to overcome the limited efficacy in patients with HRD. The present study was designed to develop topotecan- and olaparib-loaded liposomes (TLL and OLL) and assess the effectiveness of their combination in patient-derived ovarian cancer samples.</p><p><strong>Methods: </strong>We used HEOC, four clear-cell tumors (EOC 1-4), malignant ascites, and an OCI-E1p endometrioid primary ovarian cancer cell line and performed NGS analysis of BRCA1/2 mutation status. Antiproliferative activity was determined with the MTT assay. The Chou-Talalay algorithm was used to investigate the in vitro pharmacodynamic interactions of TLLs and OLLs.</p><p><strong>Results: </strong>The OLL showed significantly higher efficacy in all ovarian cancer types with wild-type BRCA1/2 than a conventional formulation, suggesting potential for increased in vivo efficacy. The TLL revealed substantially higher toxicity to EOC 1, EOC 3, ascites and lower toxicity to HEOC than the standard formulation, suggesting better therapeutic efficacy and safety profile. The combination of studied compounds showed a higher reduction in cell viability than drugs used individually, demonstrating a synergistic antitumor effect at most of the selected concentrations.</p><p><strong>Conclusions: </strong>The concentration-dependent response of different ovarian cancer cell types to combination therapy confirms the need for in vitro optimization to maximize drug cytotoxicity. The OLL and TLL combination is a promising formulation for further animal studies, especially for eliminating epithelial ovarian cancer with wild-type BRCA1/2.</p>\",\"PeriodicalId\":9385,\"journal\":{\"name\":\"Cancer Cell International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320834/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Cell International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12935-024-03469-0\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-024-03469-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Synergistic antitumor effect of liposomal-based formulations of olaparib and topotecan in primary epithelial ovarian cancer cells.
Background: Olaparib is a PARP inhibitor inducing synthetic lethality in tumors with deficient homologous recombination (HRD) caused by BRCA1/2 mutations. The FDA has approved monotherapy for first-line platinum-sensitive, recurrent high-grade epithelial ovarian cancer. Combination therapy alongside DNA-damaging therapeutics is a promising solution to overcome the limited efficacy in patients with HRD. The present study was designed to develop topotecan- and olaparib-loaded liposomes (TLL and OLL) and assess the effectiveness of their combination in patient-derived ovarian cancer samples.
Methods: We used HEOC, four clear-cell tumors (EOC 1-4), malignant ascites, and an OCI-E1p endometrioid primary ovarian cancer cell line and performed NGS analysis of BRCA1/2 mutation status. Antiproliferative activity was determined with the MTT assay. The Chou-Talalay algorithm was used to investigate the in vitro pharmacodynamic interactions of TLLs and OLLs.
Results: The OLL showed significantly higher efficacy in all ovarian cancer types with wild-type BRCA1/2 than a conventional formulation, suggesting potential for increased in vivo efficacy. The TLL revealed substantially higher toxicity to EOC 1, EOC 3, ascites and lower toxicity to HEOC than the standard formulation, suggesting better therapeutic efficacy and safety profile. The combination of studied compounds showed a higher reduction in cell viability than drugs used individually, demonstrating a synergistic antitumor effect at most of the selected concentrations.
Conclusions: The concentration-dependent response of different ovarian cancer cell types to combination therapy confirms the need for in vitro optimization to maximize drug cytotoxicity. The OLL and TLL combination is a promising formulation for further animal studies, especially for eliminating epithelial ovarian cancer with wild-type BRCA1/2.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.