{"title":"对采用不同建筑方向快速制造的商用纯钛扣疲劳寿命进行有限元分析。","authors":"Kento Odaka, Mikiya Sugano, Taichi Kawamoto, Naoki Takano, Satoru Matsunaga","doi":"10.4012/dmj.2024-023","DOIUrl":null,"url":null,"abstract":"<p><p>The geometrical accuracy of additively manufactured pure titanium clasps depends on the building orientation. The aim of this study is to compare the geometrical accuracy and the fatigue lives predicted by finite element analysis (FEA) among three clasps manufactured with different building orientations. Besides, this paper proposed a calculation method of the moment of inertia of area and cross-sectional area along with the arm as the geometrical parameters. One of the clasps manufactured with a cylindrical chucking part for the fatigue test had almost the same geometrical parameters with the CAD design. Also, the authors' fatigue life prediction method using the CAD based FEA was verified through comparison with micro-CT image-based FEA. The other two clasps had larger geometrical parameters than the CAD design, resulting in longer fatigue lives. The results implied the importance of calculating the moment of inertia of the area in the design of the clasp arm.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":"656-666"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element analysis of fatigue life of commercially pure titanium clasps additively manufactured with different building orientations.\",\"authors\":\"Kento Odaka, Mikiya Sugano, Taichi Kawamoto, Naoki Takano, Satoru Matsunaga\",\"doi\":\"10.4012/dmj.2024-023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The geometrical accuracy of additively manufactured pure titanium clasps depends on the building orientation. The aim of this study is to compare the geometrical accuracy and the fatigue lives predicted by finite element analysis (FEA) among three clasps manufactured with different building orientations. Besides, this paper proposed a calculation method of the moment of inertia of area and cross-sectional area along with the arm as the geometrical parameters. One of the clasps manufactured with a cylindrical chucking part for the fatigue test had almost the same geometrical parameters with the CAD design. Also, the authors' fatigue life prediction method using the CAD based FEA was verified through comparison with micro-CT image-based FEA. The other two clasps had larger geometrical parameters than the CAD design, resulting in longer fatigue lives. The results implied the importance of calculating the moment of inertia of the area in the design of the clasp arm.</p>\",\"PeriodicalId\":11065,\"journal\":{\"name\":\"Dental materials journal\",\"volume\":\" \",\"pages\":\"656-666\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dental materials journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4012/dmj.2024-023\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental materials journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2024-023","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Finite element analysis of fatigue life of commercially pure titanium clasps additively manufactured with different building orientations.
The geometrical accuracy of additively manufactured pure titanium clasps depends on the building orientation. The aim of this study is to compare the geometrical accuracy and the fatigue lives predicted by finite element analysis (FEA) among three clasps manufactured with different building orientations. Besides, this paper proposed a calculation method of the moment of inertia of area and cross-sectional area along with the arm as the geometrical parameters. One of the clasps manufactured with a cylindrical chucking part for the fatigue test had almost the same geometrical parameters with the CAD design. Also, the authors' fatigue life prediction method using the CAD based FEA was verified through comparison with micro-CT image-based FEA. The other two clasps had larger geometrical parameters than the CAD design, resulting in longer fatigue lives. The results implied the importance of calculating the moment of inertia of the area in the design of the clasp arm.
期刊介绍:
Dental Materials Journal is a peer review journal published by the Japanese Society for Dental Materials and Devises aiming to introduce the progress of the basic and applied sciences in dental materials and biomaterials. The dental materials-related clinical science and instrumental technologies are also within the scope of this journal. The materials dealt include synthetic polymers, ceramics, metals and tissue-derived biomaterials. Forefront dental materials and biomaterials used in developing filed, such as tissue engineering, bioengineering and artificial intelligence, are positively considered for the review as well. Recent acceptance rate of the submitted manuscript in the journal is around 30%.