{"title":"用壳聚糖制剂喷洒 dsRNA 可改善温室中对西花蓟马(Frankliniella occidentalis)的控制。","authors":"Falguni Khan, Gahyeon Jin, Yonggyun Kim","doi":"10.1111/imb.12954","DOIUrl":null,"url":null,"abstract":"<p><p>The western flower thrips, Frankliniella occidentalis, is a serious pest causing both direct feeding damage and indirect harm by transmitting the tomato spotted wilt virus. A spraying double-stranded RNA (dsRNA) targeted at the vacuolar-type ATPase (vATPase) gene was developed and demonstrated high insecticidal activity in the laboratory but less effective in field applications. To improve control efficacy under field conditions, three strategies were explored in this study. First, to identify a more efficient RNA interference (RNAi) target, dsRNA specific to the Snf7 gene was tested alongside dsRNA targeting vATPase, and both were found to be similarly effective in controlling the thrips. Second, to elucidate the factors contributing to dsRNA resistance, dsRNA-degrading enzymes were annotated and their physiological roles in diminishing RNAi efficacy were investigated. Third, to suppress the dsRNA degradation from the dsRNase activities and protect it in field conditions, the dsRNA was encapsulated with chitosan. This formulation enhanced the dsRNA's resistance to environmental stressors such as ultraviolet light and the digestive enzymes in the thrips' gut. Additionally, the chitosan formulation specifically increased the RNAi efficacy, likely by facilitating more efficient entry into the target cells, thus bolstering the insecticidal activity of the dsRNA. The formulated dsRNA was applied on F. occidentalis infesting the hot peppers in a greenhouse at a concentration of 500 ppm, demonstrating an 82.4% control efficacy compared with 59.2% control efficacy observed with the application of naked dsRNA. This study further demonstrated an enhancement in the spectrum of control by combining dsRNAs specific to three distinct thrips species, while the mixture showed no adverse effects on non-target insects, such as the lepidopteran Spodoptera exigua. Collectively, these findings reveal that the chitosan formulation of dsRNA not only improves control efficacy under field conditions but also broadens the control spectrum against three different thrips pests.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spraying dsRNA with chitosan formulation improves control of the western flower thrips, Frankliniella occidentalis, in a greenhouse.\",\"authors\":\"Falguni Khan, Gahyeon Jin, Yonggyun Kim\",\"doi\":\"10.1111/imb.12954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The western flower thrips, Frankliniella occidentalis, is a serious pest causing both direct feeding damage and indirect harm by transmitting the tomato spotted wilt virus. A spraying double-stranded RNA (dsRNA) targeted at the vacuolar-type ATPase (vATPase) gene was developed and demonstrated high insecticidal activity in the laboratory but less effective in field applications. To improve control efficacy under field conditions, three strategies were explored in this study. First, to identify a more efficient RNA interference (RNAi) target, dsRNA specific to the Snf7 gene was tested alongside dsRNA targeting vATPase, and both were found to be similarly effective in controlling the thrips. Second, to elucidate the factors contributing to dsRNA resistance, dsRNA-degrading enzymes were annotated and their physiological roles in diminishing RNAi efficacy were investigated. Third, to suppress the dsRNA degradation from the dsRNase activities and protect it in field conditions, the dsRNA was encapsulated with chitosan. This formulation enhanced the dsRNA's resistance to environmental stressors such as ultraviolet light and the digestive enzymes in the thrips' gut. Additionally, the chitosan formulation specifically increased the RNAi efficacy, likely by facilitating more efficient entry into the target cells, thus bolstering the insecticidal activity of the dsRNA. The formulated dsRNA was applied on F. occidentalis infesting the hot peppers in a greenhouse at a concentration of 500 ppm, demonstrating an 82.4% control efficacy compared with 59.2% control efficacy observed with the application of naked dsRNA. This study further demonstrated an enhancement in the spectrum of control by combining dsRNAs specific to three distinct thrips species, while the mixture showed no adverse effects on non-target insects, such as the lepidopteran Spodoptera exigua. Collectively, these findings reveal that the chitosan formulation of dsRNA not only improves control efficacy under field conditions but also broadens the control spectrum against three different thrips pests.</p>\",\"PeriodicalId\":13526,\"journal\":{\"name\":\"Insect Molecular Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/imb.12954\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12954","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Spraying dsRNA with chitosan formulation improves control of the western flower thrips, Frankliniella occidentalis, in a greenhouse.
The western flower thrips, Frankliniella occidentalis, is a serious pest causing both direct feeding damage and indirect harm by transmitting the tomato spotted wilt virus. A spraying double-stranded RNA (dsRNA) targeted at the vacuolar-type ATPase (vATPase) gene was developed and demonstrated high insecticidal activity in the laboratory but less effective in field applications. To improve control efficacy under field conditions, three strategies were explored in this study. First, to identify a more efficient RNA interference (RNAi) target, dsRNA specific to the Snf7 gene was tested alongside dsRNA targeting vATPase, and both were found to be similarly effective in controlling the thrips. Second, to elucidate the factors contributing to dsRNA resistance, dsRNA-degrading enzymes were annotated and their physiological roles in diminishing RNAi efficacy were investigated. Third, to suppress the dsRNA degradation from the dsRNase activities and protect it in field conditions, the dsRNA was encapsulated with chitosan. This formulation enhanced the dsRNA's resistance to environmental stressors such as ultraviolet light and the digestive enzymes in the thrips' gut. Additionally, the chitosan formulation specifically increased the RNAi efficacy, likely by facilitating more efficient entry into the target cells, thus bolstering the insecticidal activity of the dsRNA. The formulated dsRNA was applied on F. occidentalis infesting the hot peppers in a greenhouse at a concentration of 500 ppm, demonstrating an 82.4% control efficacy compared with 59.2% control efficacy observed with the application of naked dsRNA. This study further demonstrated an enhancement in the spectrum of control by combining dsRNAs specific to three distinct thrips species, while the mixture showed no adverse effects on non-target insects, such as the lepidopteran Spodoptera exigua. Collectively, these findings reveal that the chitosan formulation of dsRNA not only improves control efficacy under field conditions but also broadens the control spectrum against three different thrips pests.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).