通过多尺度建模确定流体灌注下不同细胞在细胞-基质界面的体外机械反应。

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-08-12 DOI:10.1002/jbm.b.35462
Abhisek Gupta, Ananya Barui, Rupak K. Banerjee, Apurba Das, Amit Roy Chowdhury
{"title":"通过多尺度建模确定流体灌注下不同细胞在细胞-基质界面的体外机械反应。","authors":"Abhisek Gupta,&nbsp;Ananya Barui,&nbsp;Rupak K. Banerjee,&nbsp;Apurba Das,&nbsp;Amit Roy Chowdhury","doi":"10.1002/jbm.b.35462","DOIUrl":null,"url":null,"abstract":"<p>Investigating the influence of different cellular mechanical and physical properties on cells in vitro is important for assessing cellular activities like differentiation, proliferation, and migration. Evaluating the mechanical response of the cells lodged on a scaffold due to variations in substrate roughness, substrate elasticity, fluid flow, and the shapes of the cells is the main goal of the study. In this comprehensive analysis, a combination of the fluid structure interaction method and the submodeled finite element technique was employed to anticipate the mechanical responses across various cells at the interface between cells and the substrate. Fluid inlet velocity, substrate roughness, and substrate material were varied in this analysis. Different cell shapes were considered along with various components such as cell membrane, cytoplasm, nucleus, and cytoskeletons. This analysis shows the effect of these individual parameters on the elastic strain and strain energy density of cells at the cell-substrate interface. The results highlight that substrate roughness has a more significant impact on the mechanical response of cells at the interface than substrate elasticity. However, effect of the substrate elasticity becomes crucial for extremely soft substrate materials. The results of this research can be applied to identify the optimal parameters for fluid flow and create a suitable condition for cell culture.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiscale modeling to determine in vitro mechanical responses of different cells at the cell-substrate interface under fluid perfusion\",\"authors\":\"Abhisek Gupta,&nbsp;Ananya Barui,&nbsp;Rupak K. Banerjee,&nbsp;Apurba Das,&nbsp;Amit Roy Chowdhury\",\"doi\":\"10.1002/jbm.b.35462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Investigating the influence of different cellular mechanical and physical properties on cells in vitro is important for assessing cellular activities like differentiation, proliferation, and migration. Evaluating the mechanical response of the cells lodged on a scaffold due to variations in substrate roughness, substrate elasticity, fluid flow, and the shapes of the cells is the main goal of the study. In this comprehensive analysis, a combination of the fluid structure interaction method and the submodeled finite element technique was employed to anticipate the mechanical responses across various cells at the interface between cells and the substrate. Fluid inlet velocity, substrate roughness, and substrate material were varied in this analysis. Different cell shapes were considered along with various components such as cell membrane, cytoplasm, nucleus, and cytoskeletons. This analysis shows the effect of these individual parameters on the elastic strain and strain energy density of cells at the cell-substrate interface. The results highlight that substrate roughness has a more significant impact on the mechanical response of cells at the interface than substrate elasticity. However, effect of the substrate elasticity becomes crucial for extremely soft substrate materials. The results of this research can be applied to identify the optimal parameters for fluid flow and create a suitable condition for cell culture.</p>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35462\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35462","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究不同的细胞机械和物理特性对体外细胞的影响对于评估分化、增殖和迁移等细胞活动非常重要。评估基底粗糙度、基底弹性、流体流动和细胞形状的变化对固定在支架上的细胞的机械响应是本研究的主要目标。在这项综合分析中,采用了流体结构相互作用法和子模型有限元技术相结合的方法来预测细胞与基底界面上各种细胞的机械响应。在分析过程中,流体入口速度、基底粗糙度和基底材料都发生了变化。考虑了不同的细胞形状以及细胞膜、细胞质、细胞核和细胞骨架等各种成分。分析显示了这些参数对细胞-基底界面上细胞的弹性应变和应变能密度的影响。结果表明,与基底弹性相比,基底粗糙度对界面处细胞机械响应的影响更为显著。然而,对于极软的基底材料,基底弹性的影响变得至关重要。这项研究的结果可用于确定流体流动的最佳参数,为细胞培养创造合适的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multiscale modeling to determine in vitro mechanical responses of different cells at the cell-substrate interface under fluid perfusion

Investigating the influence of different cellular mechanical and physical properties on cells in vitro is important for assessing cellular activities like differentiation, proliferation, and migration. Evaluating the mechanical response of the cells lodged on a scaffold due to variations in substrate roughness, substrate elasticity, fluid flow, and the shapes of the cells is the main goal of the study. In this comprehensive analysis, a combination of the fluid structure interaction method and the submodeled finite element technique was employed to anticipate the mechanical responses across various cells at the interface between cells and the substrate. Fluid inlet velocity, substrate roughness, and substrate material were varied in this analysis. Different cell shapes were considered along with various components such as cell membrane, cytoplasm, nucleus, and cytoskeletons. This analysis shows the effect of these individual parameters on the elastic strain and strain energy density of cells at the cell-substrate interface. The results highlight that substrate roughness has a more significant impact on the mechanical response of cells at the interface than substrate elasticity. However, effect of the substrate elasticity becomes crucial for extremely soft substrate materials. The results of this research can be applied to identify the optimal parameters for fluid flow and create a suitable condition for cell culture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
期刊最新文献
Accelerated In Vitro Oxidative Degradation Testing of Ultra-High Molecular Weight Polyethylene (UHMWPE) Issue Information Biocompatible and Safe Decellularized Spinach With Antibacterial and Wound Healing Activity In Vitro and In Vivo Biocompatibility of Bacterial Cellulose Molecular Biomarkers for In Vitro Thrombogenicity Assessment of Medical Device Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1