利用卫星观测低延迟估算大气二氧化碳增长率:评估卫星和现场观测方法的采样误差

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY AGU Advances Pub Date : 2024-08-13 DOI:10.1029/2023AV001145
Sudhanshu Pandey, John B. Miller, Sourish Basu, Junjie Liu, Brad Weir, Brendan Byrne, Frédéric Chevallier, Kevin W. Bowman, Zhiqiang Liu, Feng Deng, Christopher W. O’Dell, Abhishek Chatterjee
{"title":"利用卫星观测低延迟估算大气二氧化碳增长率:评估卫星和现场观测方法的采样误差","authors":"Sudhanshu Pandey,&nbsp;John B. Miller,&nbsp;Sourish Basu,&nbsp;Junjie Liu,&nbsp;Brad Weir,&nbsp;Brendan Byrne,&nbsp;Frédéric Chevallier,&nbsp;Kevin W. Bowman,&nbsp;Zhiqiang Liu,&nbsp;Feng Deng,&nbsp;Christopher W. O’Dell,&nbsp;Abhishek Chatterjee","doi":"10.1029/2023AV001145","DOIUrl":null,"url":null,"abstract":"<p>The atmospheric CO<sub>2</sub> growth rate is a fundamental measure of climate forcing. NOAA's growth rate estimates, derived from in situ observations at the marine boundary layer (MBL), serve as the benchmark in policy and science. However, NOAA's MBL-based method encounters challenges in accurately estimating the whole-atmosphere CO<sub>2</sub> growth rate at sub-annual scales. Here we introduce the Growth Rate from Satellite Observations (GRESO) method as a complementary approach to estimate the whole-atmosphere CO<sub>2</sub> growth rate utilizing satellite data. Satellite CO<sub>2</sub> observations offer extensive atmospheric coverage that extends the capability of the current NOAA benchmark. We assess the sampling errors of the GRESO and NOAA methods using 10 atmospheric transport model simulations. The simulations generate synthetic OCO-2 satellite and NOAA MBL data for calculating CO<sub>2</sub> growth rates, which are compared against the global sum of carbon fluxes used as model inputs. We find good performance for the NOAA method (R = 0.93, RMSE = 0.12 ppm year<sup>−1</sup> or 0.25 PgC year<sup>−1</sup>). GRESO demonstrates lower sampling errors (R = 1.00; RMSE = 0.04 ppm year<sup>−1</sup> or 0.09 PgC year<sup>−1</sup>). Additionally, GRESO shows better performance at monthly scales than the NOAA method (R = 0.76 vs. 0.47, respectively). Due to CO<sub>2</sub>'s atmospheric longevity, the NOAA method accurately captures growth rates over 5-year intervals. GRESO's robustness across partial coverage configurations (ocean or land data) shows that satellites can be promising tools for low-latency CO<sub>2</sub> growth rate information, provided the systematic biases are minimized using in situ observations. Along with accurate and calibrated NOAA in situ data, satellite-derived growth rates can provide information about the global carbon cycle at sub-annual scales.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 4","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023AV001145","citationCount":"0","resultStr":"{\"title\":\"Toward Low-Latency Estimation of Atmospheric CO2 Growth Rates Using Satellite Observations: Evaluating Sampling Errors of Satellite and In Situ Observing Approaches\",\"authors\":\"Sudhanshu Pandey,&nbsp;John B. Miller,&nbsp;Sourish Basu,&nbsp;Junjie Liu,&nbsp;Brad Weir,&nbsp;Brendan Byrne,&nbsp;Frédéric Chevallier,&nbsp;Kevin W. Bowman,&nbsp;Zhiqiang Liu,&nbsp;Feng Deng,&nbsp;Christopher W. O’Dell,&nbsp;Abhishek Chatterjee\",\"doi\":\"10.1029/2023AV001145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The atmospheric CO<sub>2</sub> growth rate is a fundamental measure of climate forcing. NOAA's growth rate estimates, derived from in situ observations at the marine boundary layer (MBL), serve as the benchmark in policy and science. However, NOAA's MBL-based method encounters challenges in accurately estimating the whole-atmosphere CO<sub>2</sub> growth rate at sub-annual scales. Here we introduce the Growth Rate from Satellite Observations (GRESO) method as a complementary approach to estimate the whole-atmosphere CO<sub>2</sub> growth rate utilizing satellite data. Satellite CO<sub>2</sub> observations offer extensive atmospheric coverage that extends the capability of the current NOAA benchmark. We assess the sampling errors of the GRESO and NOAA methods using 10 atmospheric transport model simulations. The simulations generate synthetic OCO-2 satellite and NOAA MBL data for calculating CO<sub>2</sub> growth rates, which are compared against the global sum of carbon fluxes used as model inputs. We find good performance for the NOAA method (R = 0.93, RMSE = 0.12 ppm year<sup>−1</sup> or 0.25 PgC year<sup>−1</sup>). GRESO demonstrates lower sampling errors (R = 1.00; RMSE = 0.04 ppm year<sup>−1</sup> or 0.09 PgC year<sup>−1</sup>). Additionally, GRESO shows better performance at monthly scales than the NOAA method (R = 0.76 vs. 0.47, respectively). Due to CO<sub>2</sub>'s atmospheric longevity, the NOAA method accurately captures growth rates over 5-year intervals. GRESO's robustness across partial coverage configurations (ocean or land data) shows that satellites can be promising tools for low-latency CO<sub>2</sub> growth rate information, provided the systematic biases are minimized using in situ observations. Along with accurate and calibrated NOAA in situ data, satellite-derived growth rates can provide information about the global carbon cycle at sub-annual scales.</p>\",\"PeriodicalId\":100067,\"journal\":{\"name\":\"AGU Advances\",\"volume\":\"5 4\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023AV001145\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AGU Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023AV001145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023AV001145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大气二氧化碳增长率是衡量气候作用力的基本指标。美国国家海洋和大气管理局(NOAA)通过海洋边界层(MBL)的现场观测得出的增长率估计值是政策和科学的基准。然而,美国国家海洋和大气管理局基于海洋边界层的方法在准确估算次年尺度的整个大气二氧化碳增长率方面遇到了挑战。在此,我们介绍卫星观测的增长率(GRESO)方法,作为利用卫星数据估算整个大气层二氧化碳增长率的补充方法。卫星二氧化碳观测提供了广泛的大气覆盖范围,扩展了当前 NOAA 基准的能力。我们使用 10 个大气传输模型模拟评估了 GRESO 和 NOAA 方法的采样误差。模拟生成用于计算二氧化碳增长率的合成 OCO-2 卫星和 NOAA MBL 数据,并将其与作为模型输入的全球碳通量总和进行比较。我们发现 NOAA 方法性能良好(R = 0.93,RMSE = 0.12 ppm year-1 或 0.25 PgC year-1)。GRESO 的采样误差较小(R = 1.00;RMSE = 0.04 ppm year-1 或 0.09 PgC year-1)。此外,与 NOAA 方法相比,GRESO 在月尺度上的表现更好(R = 0.76 对 0.47)。由于 CO2 在大气中的寿命较长,NOAA 方法可以准确捕捉到 5 年的增长率。GRESO 在部分覆盖配置(海洋或陆地数据)下的稳健性表明,只要利用原位观测将系统偏差降至最低,卫星就有希望成为低延迟二氧化碳增长率信息的工具。与精确和经过校准的 NOAA 原地数据一起,卫星得出的增长率可以提供次年度尺度的全球碳循环信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward Low-Latency Estimation of Atmospheric CO2 Growth Rates Using Satellite Observations: Evaluating Sampling Errors of Satellite and In Situ Observing Approaches

The atmospheric CO2 growth rate is a fundamental measure of climate forcing. NOAA's growth rate estimates, derived from in situ observations at the marine boundary layer (MBL), serve as the benchmark in policy and science. However, NOAA's MBL-based method encounters challenges in accurately estimating the whole-atmosphere CO2 growth rate at sub-annual scales. Here we introduce the Growth Rate from Satellite Observations (GRESO) method as a complementary approach to estimate the whole-atmosphere CO2 growth rate utilizing satellite data. Satellite CO2 observations offer extensive atmospheric coverage that extends the capability of the current NOAA benchmark. We assess the sampling errors of the GRESO and NOAA methods using 10 atmospheric transport model simulations. The simulations generate synthetic OCO-2 satellite and NOAA MBL data for calculating CO2 growth rates, which are compared against the global sum of carbon fluxes used as model inputs. We find good performance for the NOAA method (R = 0.93, RMSE = 0.12 ppm year−1 or 0.25 PgC year−1). GRESO demonstrates lower sampling errors (R = 1.00; RMSE = 0.04 ppm year−1 or 0.09 PgC year−1). Additionally, GRESO shows better performance at monthly scales than the NOAA method (R = 0.76 vs. 0.47, respectively). Due to CO2's atmospheric longevity, the NOAA method accurately captures growth rates over 5-year intervals. GRESO's robustness across partial coverage configurations (ocean or land data) shows that satellites can be promising tools for low-latency CO2 growth rate information, provided the systematic biases are minimized using in situ observations. Along with accurate and calibrated NOAA in situ data, satellite-derived growth rates can provide information about the global carbon cycle at sub-annual scales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Toward a Universal Model of Hyporheic Exchange and Nutrient Cycling in Streams Emerging Climate Change Signals in Atmospheric Circulation Evidence for Magnetically-Driven Accretion in the Distal Solar System Substantial Global Radial Variations of Basalt Content Near the 660-km Discontinuity Toward Modeling Continental-Scale Inland Water Carbon Dioxide Emissions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1