质子触发的 AMPA 受体 N 端结构域重排影响受体动力学和突触定位

IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nature Structural & Molecular Biology Pub Date : 2024-08-13 DOI:10.1038/s41594-024-01369-5
Josip Ivica, Nejc Kejzar, Hinze Ho, Imogen Stockwell, Viktor Kuchtiak, Alexander M. Scrutton, Terunaga Nakagawa, Ingo H. Greger
{"title":"质子触发的 AMPA 受体 N 端结构域重排影响受体动力学和突触定位","authors":"Josip Ivica, Nejc Kejzar, Hinze Ho, Imogen Stockwell, Viktor Kuchtiak, Alexander M. Scrutton, Terunaga Nakagawa, Ingo H. Greger","doi":"10.1038/s41594-024-01369-5","DOIUrl":null,"url":null,"abstract":"AMPA glutamate receptors (AMPARs) are ion channel tetramers that mediate the majority of fast excitatory synaptic transmission. They are composed of four subunits (GluA1–GluA4); the GluA2 subunit dominates AMPAR function throughout the forebrain. Its extracellular N-terminal domain (NTD) determines receptor localization at the synapse, ensuring reliable synaptic transmission and plasticity. This synaptic anchoring function requires a compact NTD tier, stabilized by a GluA2-specific NTD interface. Here we show that low pH conditions, which accompany synaptic activity, rupture this interface. All-atom molecular dynamics simulations reveal that protonation of an interfacial histidine residue (H208) centrally contributes to NTD rearrangement. Moreover, in stark contrast to their canonical compact arrangement at neutral pH, GluA2 cryo-electron microscopy structures exhibit a wide spectrum of NTD conformations under acidic conditions. We show that the consequences of this pH-dependent conformational control are twofold: rupture of the NTD tier slows recovery from desensitized states and increases receptor mobility at mouse hippocampal synapses. Therefore, a proton-triggered NTD switch will shape both AMPAR location and kinetics, thereby impacting synaptic signal transmission. Combining patch-clamp electrophysiology, molecular dynamics simulations, cryo-electron microscopy and imaging of neuronal synapses, the authors reveal how AMPA glutamate receptors are regulated by protons that are released from synaptic vesicles during signal transmission.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 10","pages":"1601-1613"},"PeriodicalIF":12.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01369-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Proton-triggered rearrangement of the AMPA receptor N-terminal domains impacts receptor kinetics and synaptic localization\",\"authors\":\"Josip Ivica, Nejc Kejzar, Hinze Ho, Imogen Stockwell, Viktor Kuchtiak, Alexander M. Scrutton, Terunaga Nakagawa, Ingo H. Greger\",\"doi\":\"10.1038/s41594-024-01369-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AMPA glutamate receptors (AMPARs) are ion channel tetramers that mediate the majority of fast excitatory synaptic transmission. They are composed of four subunits (GluA1–GluA4); the GluA2 subunit dominates AMPAR function throughout the forebrain. Its extracellular N-terminal domain (NTD) determines receptor localization at the synapse, ensuring reliable synaptic transmission and plasticity. This synaptic anchoring function requires a compact NTD tier, stabilized by a GluA2-specific NTD interface. Here we show that low pH conditions, which accompany synaptic activity, rupture this interface. All-atom molecular dynamics simulations reveal that protonation of an interfacial histidine residue (H208) centrally contributes to NTD rearrangement. Moreover, in stark contrast to their canonical compact arrangement at neutral pH, GluA2 cryo-electron microscopy structures exhibit a wide spectrum of NTD conformations under acidic conditions. We show that the consequences of this pH-dependent conformational control are twofold: rupture of the NTD tier slows recovery from desensitized states and increases receptor mobility at mouse hippocampal synapses. Therefore, a proton-triggered NTD switch will shape both AMPAR location and kinetics, thereby impacting synaptic signal transmission. Combining patch-clamp electrophysiology, molecular dynamics simulations, cryo-electron microscopy and imaging of neuronal synapses, the authors reveal how AMPA glutamate receptors are regulated by protons that are released from synaptic vesicles during signal transmission.\",\"PeriodicalId\":49141,\"journal\":{\"name\":\"Nature Structural & Molecular Biology\",\"volume\":\"31 10\",\"pages\":\"1601-1613\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41594-024-01369-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Structural & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41594-024-01369-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01369-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

AMPA 谷氨酸受体(AMPARs)是离子通道四聚体,介导了大部分快速兴奋性突触传递。它们由四个亚基(GluA1-GluA4)组成;GluA2 亚基主导整个前脑的 AMPAR 功能。其细胞外 N 端结构域(NTD)决定受体在突触处的定位,确保可靠的突触传递和可塑性。这种突触锚定功能需要一个紧凑的 NTD 层,由 GluA2 特异性 NTD 接口稳定。在这里,我们展示了伴随突触活动的低 pH 条件会导致这一界面破裂。全原子分子动力学模拟显示,界面组氨酸残基(H208)的质子化是导致 NTD 重排的主要原因。此外,与它们在中性 pH 值下的典型紧凑排列形成鲜明对比的是,GluA2 的冷冻电镜结构在酸性条件下呈现出广泛的 NTD 构象。我们的研究表明,这种依赖于 pH 值的构象控制具有双重后果:NTD 层的断裂会减缓从脱敏状态恢复的速度,并增加受体在小鼠海马突触中的流动性。因此,质子触发的 NTD 开关将影响 AMPAR 的位置和动力学,从而影响突触信号的传递。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proton-triggered rearrangement of the AMPA receptor N-terminal domains impacts receptor kinetics and synaptic localization
AMPA glutamate receptors (AMPARs) are ion channel tetramers that mediate the majority of fast excitatory synaptic transmission. They are composed of four subunits (GluA1–GluA4); the GluA2 subunit dominates AMPAR function throughout the forebrain. Its extracellular N-terminal domain (NTD) determines receptor localization at the synapse, ensuring reliable synaptic transmission and plasticity. This synaptic anchoring function requires a compact NTD tier, stabilized by a GluA2-specific NTD interface. Here we show that low pH conditions, which accompany synaptic activity, rupture this interface. All-atom molecular dynamics simulations reveal that protonation of an interfacial histidine residue (H208) centrally contributes to NTD rearrangement. Moreover, in stark contrast to their canonical compact arrangement at neutral pH, GluA2 cryo-electron microscopy structures exhibit a wide spectrum of NTD conformations under acidic conditions. We show that the consequences of this pH-dependent conformational control are twofold: rupture of the NTD tier slows recovery from desensitized states and increases receptor mobility at mouse hippocampal synapses. Therefore, a proton-triggered NTD switch will shape both AMPAR location and kinetics, thereby impacting synaptic signal transmission. Combining patch-clamp electrophysiology, molecular dynamics simulations, cryo-electron microscopy and imaging of neuronal synapses, the authors reveal how AMPA glutamate receptors are regulated by protons that are released from synaptic vesicles during signal transmission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Structural & Molecular Biology
Nature Structural & Molecular Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOPHYSICS
CiteScore
22.00
自引率
1.80%
发文量
160
审稿时长
3-8 weeks
期刊介绍: Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.
期刊最新文献
Menopause age and cancer risk is influenced by rare genetic variants Publisher Correction: Structure and activation of the RING E3 ubiquitin ligase TRIM72 on the membrane Author Correction: Structural basis for antibody-mediated NMDA receptor clustering and endocytosis in autoimmune encephalitis Clamping Pol ε to the leading strand Cohesin closes the door on coexpression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1