Regina Mencia, Agustín L. Arce, Candela Houriet, Wenfei Xian, Adrián Contreras, Gautam Shirsekar, Detlef Weigel, Pablo A. Manavella
{"title":"Transposon-triggered epigenetic chromatin dynamics modulate EFR-related pathogen response","authors":"Regina Mencia, Agustín L. Arce, Candela Houriet, Wenfei Xian, Adrián Contreras, Gautam Shirsekar, Detlef Weigel, Pablo A. Manavella","doi":"10.1038/s41594-024-01440-1","DOIUrl":null,"url":null,"abstract":"Infectious diseases drive wild plant evolution and impact crop yield. Plants, like animals, sense biotic threats through pattern recognition receptors (PRRs). Overly robust immune responses can harm plants; thus, understanding the tuning of defense response mechanisms is crucial for developing pathogen-resistant crops. In this study, we found that an inverted-repeat transposon (EFR-associated IR, Ea-IR) located between the loci encoding PRRs ELONGATION FACTOR-TU RECEPTOR (EFR) and myosin XI-k (XI-k) in Arabidopsis affects chromatin organization, promoting the formation of a repressive chromatin loop. Upon pathogen infection, chromatin changes around EFR and XI-k correlate with increased EFR transcription. Pathogen-induced chromatin opening causes RNA polymerase II readthrough, producing a longer, Ea-IR-containing XI-k transcript, processed by Dicer-like enzymes into small RNAs, which reset chromatin to a repressive state attenuating the immune response after infection. Arabidopsis accessions lacking Ea-IR have higher basal EFR levels and resistance to pathogens. We show a scenario in which a transposon, chromatin organization and gene expression interact to fine-tune immune responses, during both the course of infection and the course of evolution. Here, the authors show that an inverted-repeat transposon located next to the pattern recognition receptor ELONGATION FACTOR-TU RECEPTOR (EFR)-encoding gene in Arabidopsis controls chromatin organization, EFR gene expression and plant immune response.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"32 1","pages":"199-211"},"PeriodicalIF":12.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01440-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01440-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Infectious diseases drive wild plant evolution and impact crop yield. Plants, like animals, sense biotic threats through pattern recognition receptors (PRRs). Overly robust immune responses can harm plants; thus, understanding the tuning of defense response mechanisms is crucial for developing pathogen-resistant crops. In this study, we found that an inverted-repeat transposon (EFR-associated IR, Ea-IR) located between the loci encoding PRRs ELONGATION FACTOR-TU RECEPTOR (EFR) and myosin XI-k (XI-k) in Arabidopsis affects chromatin organization, promoting the formation of a repressive chromatin loop. Upon pathogen infection, chromatin changes around EFR and XI-k correlate with increased EFR transcription. Pathogen-induced chromatin opening causes RNA polymerase II readthrough, producing a longer, Ea-IR-containing XI-k transcript, processed by Dicer-like enzymes into small RNAs, which reset chromatin to a repressive state attenuating the immune response after infection. Arabidopsis accessions lacking Ea-IR have higher basal EFR levels and resistance to pathogens. We show a scenario in which a transposon, chromatin organization and gene expression interact to fine-tune immune responses, during both the course of infection and the course of evolution. Here, the authors show that an inverted-repeat transposon located next to the pattern recognition receptor ELONGATION FACTOR-TU RECEPTOR (EFR)-encoding gene in Arabidopsis controls chromatin organization, EFR gene expression and plant immune response.
期刊介绍:
Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.