克服交叉灵敏度的限制:化学电阻式气体传感器阵列的模式识别方法。

IF 26.6 1区 材料科学 Q1 Engineering Nano-Micro Letters Pub Date : 2024-08-14 DOI:10.1007/s40820-024-01489-z
Haixia Mei, Jingyi Peng, Tao Wang, Tingting Zhou, Hongran Zhao, Tong Zhang, Zhi Yang
{"title":"克服交叉灵敏度的限制:化学电阻式气体传感器阵列的模式识别方法。","authors":"Haixia Mei,&nbsp;Jingyi Peng,&nbsp;Tao Wang,&nbsp;Tingting Zhou,&nbsp;Hongran Zhao,&nbsp;Tong Zhang,&nbsp;Zhi Yang","doi":"10.1007/s40820-024-01489-z","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n \n<ul>\n <li>\n <p>The types, working principles, advantages and limitations of pattern recognition methods based on chemiresistive gas sensor array are reviewed and discussed comprehensively.</p>\n </li>\n <li>\n <p>Outstanding and novel advancements in the application of machine learning methods for gas recognition in different important areas are compared, summarized and evaluated.</p>\n </li>\n <li>\n <p>The current challenges and future prospects of machine learning methods in artificial olfactory systems are discussed and justified.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"16 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324646/pdf/","citationCount":"0","resultStr":"{\"title\":\"Overcoming the Limits of Cross-Sensitivity: Pattern Recognition Methods for Chemiresistive Gas Sensor Array\",\"authors\":\"Haixia Mei,&nbsp;Jingyi Peng,&nbsp;Tao Wang,&nbsp;Tingting Zhou,&nbsp;Hongran Zhao,&nbsp;Tong Zhang,&nbsp;Zhi Yang\",\"doi\":\"10.1007/s40820-024-01489-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n \\n<ul>\\n <li>\\n <p>The types, working principles, advantages and limitations of pattern recognition methods based on chemiresistive gas sensor array are reviewed and discussed comprehensively.</p>\\n </li>\\n <li>\\n <p>Outstanding and novel advancements in the application of machine learning methods for gas recognition in different important areas are compared, summarized and evaluated.</p>\\n </li>\\n <li>\\n <p>The current challenges and future prospects of machine learning methods in artificial olfactory systems are discussed and justified.</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324646/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-024-01489-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01489-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

作为人工嗅觉的信息采集终端,化学电阻式气体传感器常常受到交叉敏感性的困扰,降低其对环境气体的交叉反应一直是气体传感领域的难点和重点。基于传感器阵列的模式识别是克服气体传感器交叉敏感性的最显著方法。选择合适的模式识别方法对于加强数据分析、减少误差、提高系统可靠性、获得更好的分类或气体浓度预测结果至关重要。在本综述中,我们分析了化学电阻式气体传感器交叉灵敏度的感应机制。我们进一步研究了气体传感阵列中使用的模式识别算法的类型、工作原理、特点和适用的气体检测范围。此外,我们还报告、总结和评估了用于气体识别的模式识别方法的突出和新进展。同时,本研究还展示了利用这些方法进行气体识别的最新进展,特别是在确保食品安全、监测环境和辅助医疗诊断这三个关键领域。总之,本研究通过考虑现有的情况和挑战,预测了未来的研究前景。希望这项工作能为减轻气敏设备的交叉敏感性做出积极贡献,并为气体识别应用中的算法选择提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overcoming the Limits of Cross-Sensitivity: Pattern Recognition Methods for Chemiresistive Gas Sensor Array

Highlights

  • The types, working principles, advantages and limitations of pattern recognition methods based on chemiresistive gas sensor array are reviewed and discussed comprehensively.

  • Outstanding and novel advancements in the application of machine learning methods for gas recognition in different important areas are compared, summarized and evaluated.

  • The current challenges and future prospects of machine learning methods in artificial olfactory systems are discussed and justified.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
期刊最新文献
Wafer-Scale Ag2S-Based Memristive Crossbar Arrays with Ultra-Low Switching-Energies Reaching Biological Synapses Bioinspired Ultrasensitive Flexible Strain Sensors for Real-Time Wireless Detection of Liquid Leakage Direct Photolithography of WOx Nanoparticles for High-Resolution Non-Emissive Displays Exploration of Gas-Dependent Self-Adaptive Reconstruction Behavior of Cu2O for Electrochemical CO2 Conversion to Multi-Carbon Products Flexible Strain Sensors with Ultra-High Sensitivity and Wide Range Enabled by Crack-Modulated Electrical Pathways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1