Joshua M Budd, Nicole M Notaro, Blair MacLeod, David M Mutch, David J Dyck
{"title":"无论鱼油含量多少,生酮饮食都不会影响雄性大鼠的葡萄糖稳态或肌肉胰岛素反应。","authors":"Joshua M Budd, Nicole M Notaro, Blair MacLeod, David M Mutch, David J Dyck","doi":"10.1152/ajpendo.00236.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Ketogenic diets (KDs) are very high in fat and low in carbohydrates. Evidence supports that KDs improve glucose metabolism in humans and rodents that are obese and/or insulin resistant. Conversely, findings in healthy rodents suggest that KDs may impair glucose homeostasis. In addition, most experimental KDs are composed of saturated and monounsaturated fatty acids, with almost no omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA). Evidence supports a beneficial role for n-3 LCPUFA on glucose homeostasis in the context of a metabolic challenge. To our knowledge, no study has examined whether the inclusion of n-3 LCPUFA affects the impact of a KD on glucose homeostasis. The objective of this study was to examine the impact of a KD on whole body glucose tolerance and skeletal muscle insulin response in rats and to determine if increasing the n-3 LCPUFA content in a KD with menhaden oil could improve metabolic outcomes. Male Sprague-Dawley rats were pair-fed one of a low-fat diet, high-fat diet, KD, or a KD supplemented with menhaden oil for 8 wk. No significant differences in whole body glucose tolerance, skeletal muscle insulin signaling, or skeletal muscle insulin-stimulated glucose uptake were detected between the dietary groups. Our findings suggest that KD feeding, with or without supplementation of n-3 LCPUFA, does not affect whole body glucose homeostasis or skeletal muscle insulin response under pair-feeding conditions.<b>NEW & NOTEWORTHY</b> Ketogenic diets (KDs) improve glucose metabolism in humans and rodents that are insulin resistant, but their impact is unclear in a healthy context. Furthermore, standard KDs typically lack beneficial omega-3 long-chain polyunsaturated fatty acids (n3-LCPUFA). This study assessed whether supplementing a KD with n3-LCPUFA could alter glucose homeostasis or skeletal muscle insulin response. No differences were observed between a standard KD and a KD with n3-LCPUFA when energy intake was controlled.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E449-E458"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A ketogenic diet, regardless of fish oil content, does not affect glucose homeostasis or muscle insulin response in male rats.\",\"authors\":\"Joshua M Budd, Nicole M Notaro, Blair MacLeod, David M Mutch, David J Dyck\",\"doi\":\"10.1152/ajpendo.00236.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ketogenic diets (KDs) are very high in fat and low in carbohydrates. Evidence supports that KDs improve glucose metabolism in humans and rodents that are obese and/or insulin resistant. Conversely, findings in healthy rodents suggest that KDs may impair glucose homeostasis. In addition, most experimental KDs are composed of saturated and monounsaturated fatty acids, with almost no omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA). Evidence supports a beneficial role for n-3 LCPUFA on glucose homeostasis in the context of a metabolic challenge. To our knowledge, no study has examined whether the inclusion of n-3 LCPUFA affects the impact of a KD on glucose homeostasis. The objective of this study was to examine the impact of a KD on whole body glucose tolerance and skeletal muscle insulin response in rats and to determine if increasing the n-3 LCPUFA content in a KD with menhaden oil could improve metabolic outcomes. Male Sprague-Dawley rats were pair-fed one of a low-fat diet, high-fat diet, KD, or a KD supplemented with menhaden oil for 8 wk. No significant differences in whole body glucose tolerance, skeletal muscle insulin signaling, or skeletal muscle insulin-stimulated glucose uptake were detected between the dietary groups. Our findings suggest that KD feeding, with or without supplementation of n-3 LCPUFA, does not affect whole body glucose homeostasis or skeletal muscle insulin response under pair-feeding conditions.<b>NEW & NOTEWORTHY</b> Ketogenic diets (KDs) improve glucose metabolism in humans and rodents that are insulin resistant, but their impact is unclear in a healthy context. Furthermore, standard KDs typically lack beneficial omega-3 long-chain polyunsaturated fatty acids (n3-LCPUFA). This study assessed whether supplementing a KD with n3-LCPUFA could alter glucose homeostasis or skeletal muscle insulin response. No differences were observed between a standard KD and a KD with n3-LCPUFA when energy intake was controlled.</p>\",\"PeriodicalId\":7594,\"journal\":{\"name\":\"American journal of physiology. Endocrinology and metabolism\",\"volume\":\" \",\"pages\":\"E449-E458\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Endocrinology and metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpendo.00236.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00236.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
A ketogenic diet, regardless of fish oil content, does not affect glucose homeostasis or muscle insulin response in male rats.
Ketogenic diets (KDs) are very high in fat and low in carbohydrates. Evidence supports that KDs improve glucose metabolism in humans and rodents that are obese and/or insulin resistant. Conversely, findings in healthy rodents suggest that KDs may impair glucose homeostasis. In addition, most experimental KDs are composed of saturated and monounsaturated fatty acids, with almost no omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA). Evidence supports a beneficial role for n-3 LCPUFA on glucose homeostasis in the context of a metabolic challenge. To our knowledge, no study has examined whether the inclusion of n-3 LCPUFA affects the impact of a KD on glucose homeostasis. The objective of this study was to examine the impact of a KD on whole body glucose tolerance and skeletal muscle insulin response in rats and to determine if increasing the n-3 LCPUFA content in a KD with menhaden oil could improve metabolic outcomes. Male Sprague-Dawley rats were pair-fed one of a low-fat diet, high-fat diet, KD, or a KD supplemented with menhaden oil for 8 wk. No significant differences in whole body glucose tolerance, skeletal muscle insulin signaling, or skeletal muscle insulin-stimulated glucose uptake were detected between the dietary groups. Our findings suggest that KD feeding, with or without supplementation of n-3 LCPUFA, does not affect whole body glucose homeostasis or skeletal muscle insulin response under pair-feeding conditions.NEW & NOTEWORTHY Ketogenic diets (KDs) improve glucose metabolism in humans and rodents that are insulin resistant, but their impact is unclear in a healthy context. Furthermore, standard KDs typically lack beneficial omega-3 long-chain polyunsaturated fatty acids (n3-LCPUFA). This study assessed whether supplementing a KD with n3-LCPUFA could alter glucose homeostasis or skeletal muscle insulin response. No differences were observed between a standard KD and a KD with n3-LCPUFA when energy intake was controlled.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.