{"title":"计量经济学的因果关系:思想实验的核心作用","authors":"James Heckman , Rodrigo Pinto","doi":"10.1016/j.jeconom.2024.105719","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper examines the econometric causal model and the interpretation of empirical evidence based on </span>thought experiments<span> that was developed by Ragnar Frisch and Trygve Haavelmo. We compare the econometric causal model with two currently popular causal frameworks: the Neyman–Rubin causal model and the Do-Calculus. The Neyman–Rubin causal model is based on the language of potential outcomes and was largely developed by statisticians. Instead of being based on thought experiments, it takes statistical experiments as its foundation. The Do-Calculus, developed by Judea Pearl and co-authors, relies on Directed Acyclic Graphs (DAGs) and is a popular causal framework in computer science and applied mathematics. We make the case that economists who uncritically use these frameworks often discard the substantial benefits of the econometric causal model to the detriment of more informative analyses. We illustrate the versatility and capabilities of the econometric framework using causal models developed in economics.</span></p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"243 1","pages":"Article 105719"},"PeriodicalIF":9.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Econometric causality: The central role of thought experiments\",\"authors\":\"James Heckman , Rodrigo Pinto\",\"doi\":\"10.1016/j.jeconom.2024.105719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This paper examines the econometric causal model and the interpretation of empirical evidence based on </span>thought experiments<span> that was developed by Ragnar Frisch and Trygve Haavelmo. We compare the econometric causal model with two currently popular causal frameworks: the Neyman–Rubin causal model and the Do-Calculus. The Neyman–Rubin causal model is based on the language of potential outcomes and was largely developed by statisticians. Instead of being based on thought experiments, it takes statistical experiments as its foundation. The Do-Calculus, developed by Judea Pearl and co-authors, relies on Directed Acyclic Graphs (DAGs) and is a popular causal framework in computer science and applied mathematics. We make the case that economists who uncritically use these frameworks often discard the substantial benefits of the econometric causal model to the detriment of more informative analyses. We illustrate the versatility and capabilities of the econometric framework using causal models developed in economics.</span></p></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"243 1\",\"pages\":\"Article 105719\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407624000654\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624000654","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Econometric causality: The central role of thought experiments
This paper examines the econometric causal model and the interpretation of empirical evidence based on thought experiments that was developed by Ragnar Frisch and Trygve Haavelmo. We compare the econometric causal model with two currently popular causal frameworks: the Neyman–Rubin causal model and the Do-Calculus. The Neyman–Rubin causal model is based on the language of potential outcomes and was largely developed by statisticians. Instead of being based on thought experiments, it takes statistical experiments as its foundation. The Do-Calculus, developed by Judea Pearl and co-authors, relies on Directed Acyclic Graphs (DAGs) and is a popular causal framework in computer science and applied mathematics. We make the case that economists who uncritically use these frameworks often discard the substantial benefits of the econometric causal model to the detriment of more informative analyses. We illustrate the versatility and capabilities of the econometric framework using causal models developed in economics.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.