Metis:基于 python- 的用户界面,用于收集生成化学模型的专家反馈意见

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Cheminformatics Pub Date : 2024-08-14 DOI:10.1186/s13321-024-00892-3
Janosch Menke, Yasmine Nahal, Esben Jannik Bjerrum, Mikhail Kabeshov, Samuel Kaski, Ola Engkvist
{"title":"Metis:基于 python- 的用户界面,用于收集生成化学模型的专家反馈意见","authors":"Janosch Menke,&nbsp;Yasmine Nahal,&nbsp;Esben Jannik Bjerrum,&nbsp;Mikhail Kabeshov,&nbsp;Samuel Kaski,&nbsp;Ola Engkvist","doi":"10.1186/s13321-024-00892-3","DOIUrl":null,"url":null,"abstract":"<div><p>One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists’ implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. <span>Metis</span> is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists’ detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist’s implicit knowledge and preferences. This knowledge is crucial to align the chemist’s idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the “machine” by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. <span>Metis</span> integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models.</p><p><b>Scientific contribution</b></p><p>We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist’s ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that <span>Metis</span> can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00892-3","citationCount":"0","resultStr":"{\"title\":\"Metis: a python-based user interface to collect expert feedback for generative chemistry models\",\"authors\":\"Janosch Menke,&nbsp;Yasmine Nahal,&nbsp;Esben Jannik Bjerrum,&nbsp;Mikhail Kabeshov,&nbsp;Samuel Kaski,&nbsp;Ola Engkvist\",\"doi\":\"10.1186/s13321-024-00892-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists’ implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. <span>Metis</span> is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists’ detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist’s implicit knowledge and preferences. This knowledge is crucial to align the chemist’s idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the “machine” by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. <span>Metis</span> integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models.</p><p><b>Scientific contribution</b></p><p>We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist’s ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that <span>Metis</span> can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00892-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00892-3\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00892-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目前的新药设计模型面临的一个挑战是,在实际应用中,用户的期望与模型的实际输出之间存在差距。要有效克服这一障碍,关键在于对模型进行定制,使其更好地符合化学家的隐含知识、期望和偏好。虽然人们对化学领域基于偏好和人在环机器学习的兴趣与日俱增,但目前还没有一种工具能够收集标准化的化学反馈。Metis 是一个基于 Python 的开源图形用户界面(GUI),旨在解决这一问题,并收集化学家对分子结构的详细反馈。该图形用户界面使化学家能够探索和评估分子,提供了一个用户友好型界面,用于注释偏好和指定所需或不需要的结构特征。通过为化学家提供详细反馈的机会,研究人员可以更有效地捕捉化学家的隐含知识和偏好。这些知识对于将化学家的想法与从头设计代理结合起来至关重要。图形用户界面旨在加强人类与 "机器 "之间的合作,它提供了一个直观的平台,化学家可以通过该平台对分子结构进行交互式反馈,从而帮助偏好学习和改进从头设计策略。Metis 与现有的从头设计框架 REINVENT 相集成,创建了一个闭环系统,在这个系统中,人类的专业知识可以不断地为生成模型提供信息并对其进行完善。科学贡献我们介绍了一种新颖的图形用户界面,它允许化学家/研究人员对小分子的子结构和性质提供详细的反馈。该工具可用于了解化学家的偏好,从而使新药设计模型与化学家的想法保持一致。图形用户界面可根据不同需求和项目进行定制,并可直接集成到从头开始的 REINVENT 运行中。我们相信,Metis 可以促进对整合人类反馈的新方法的讨论和开发,这种方法超越了喜欢或不喜欢分子的二元决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metis: a python-based user interface to collect expert feedback for generative chemistry models

One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists’ implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists’ detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist’s implicit knowledge and preferences. This knowledge is crucial to align the chemist’s idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the “machine” by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models.

Scientific contribution

We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist’s ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
期刊最新文献
GT-NMR: a novel graph transformer-based approach for accurate prediction of NMR chemical shifts Suitability of large language models for extraction of high-quality chemical reaction dataset from patent literature Molecular identification via molecular fingerprint extraction from atomic force microscopy images A systematic review of deep learning chemical language models in recent era Accelerated hit identification with target evaluation, deep learning and automated labs: prospective validation in IRAK1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1