整合色素和脂肪酸图谱,加强对沉积物群落组成的估计

IF 2.7 3区 环境科学与生态学 Q2 ECOLOGY Ecosphere Pub Date : 2024-08-12 DOI:10.1002/ecs2.4971
Jaakko J. Litmanen, Tommi Perälä, Kristiina Vuorio, Harri Asikainen, Sami J. Taipale
{"title":"整合色素和脂肪酸图谱,加强对沉积物群落组成的估计","authors":"Jaakko J. Litmanen,&nbsp;Tommi Perälä,&nbsp;Kristiina Vuorio,&nbsp;Harri Asikainen,&nbsp;Sami J. Taipale","doi":"10.1002/ecs2.4971","DOIUrl":null,"url":null,"abstract":"<p>Climate change, nutrition pollution, and land use alterations influence the primary production of lakes. While light-microscopy counting remains the standard for estimating phytoplankton community composition, its expense and time-consuming nature necessitate cost-effective alternatives for seston analysis. Furthermore, estimating the contribution of seston constituents other than primary producers, or non-algal particles, is not possible with light-microscopy counting. Biotracer approach using computational methods and chemotaxonomic biomarkers such as carotenoid pigments and fatty acids have been used as an alternative in seston analysis when species-level taxonomy is not required. However, a comprehensive testing of how well carotenoid and fatty acids can be used in estimating a wide range of seston phytoplankton communities using different estimation methods is lacking. To assess the accuracy of a suite of state-of-the-art biotracer-based computational methods, namely CHEMTAX, FASTAR (Fatty Acid Source-Tracking Algorithm in R), MixSIAR, and QFASA (Quantitative Fatty Acid Signature Analysis), lake water samples were collected in 2016, 2018, 2019, 2020, and 2021 for seston composition analysis in a boreal eutrophic lake with light-microscopy counting serving as the reference for seston composition. Absolute errors between the biotracer-based estimates were calculated to evaluate method performance. A small laboratory experiment to assess the reliability of estimating the contribution of non-algal particles using the computational methods with fatty acids was also conducted. The closest alignment to light-microscopy counting in terms of absolute error was achieved when both carotenoids and fatty acids were used together in the QFASA method. For CHEMTAX, FASTAR, and MixSIAR, using carotenoids alone produced the closest results. Additionally, the estimation methods accurately assessed the proportion of non-algal particles in the seston when using fatty acid profiles, a capability not possible with light-microscopy counting. Our findings demonstrate that the biotracer approach provides a viable and cost-effective alternative to light-microscopy counting when group-level information of phytoplankton community composition suffices. Furthermore, we show that non-algal particles can be effectively estimated together with phytoplankton when using fatty acids.</p>","PeriodicalId":48930,"journal":{"name":"Ecosphere","volume":"15 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.4971","citationCount":"0","resultStr":"{\"title\":\"Integrating pigment and fatty acid profiles for enhanced estimation of seston community composition\",\"authors\":\"Jaakko J. Litmanen,&nbsp;Tommi Perälä,&nbsp;Kristiina Vuorio,&nbsp;Harri Asikainen,&nbsp;Sami J. Taipale\",\"doi\":\"10.1002/ecs2.4971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate change, nutrition pollution, and land use alterations influence the primary production of lakes. While light-microscopy counting remains the standard for estimating phytoplankton community composition, its expense and time-consuming nature necessitate cost-effective alternatives for seston analysis. Furthermore, estimating the contribution of seston constituents other than primary producers, or non-algal particles, is not possible with light-microscopy counting. Biotracer approach using computational methods and chemotaxonomic biomarkers such as carotenoid pigments and fatty acids have been used as an alternative in seston analysis when species-level taxonomy is not required. However, a comprehensive testing of how well carotenoid and fatty acids can be used in estimating a wide range of seston phytoplankton communities using different estimation methods is lacking. To assess the accuracy of a suite of state-of-the-art biotracer-based computational methods, namely CHEMTAX, FASTAR (Fatty Acid Source-Tracking Algorithm in R), MixSIAR, and QFASA (Quantitative Fatty Acid Signature Analysis), lake water samples were collected in 2016, 2018, 2019, 2020, and 2021 for seston composition analysis in a boreal eutrophic lake with light-microscopy counting serving as the reference for seston composition. Absolute errors between the biotracer-based estimates were calculated to evaluate method performance. A small laboratory experiment to assess the reliability of estimating the contribution of non-algal particles using the computational methods with fatty acids was also conducted. The closest alignment to light-microscopy counting in terms of absolute error was achieved when both carotenoids and fatty acids were used together in the QFASA method. For CHEMTAX, FASTAR, and MixSIAR, using carotenoids alone produced the closest results. Additionally, the estimation methods accurately assessed the proportion of non-algal particles in the seston when using fatty acid profiles, a capability not possible with light-microscopy counting. Our findings demonstrate that the biotracer approach provides a viable and cost-effective alternative to light-microscopy counting when group-level information of phytoplankton community composition suffices. Furthermore, we show that non-algal particles can be effectively estimated together with phytoplankton when using fatty acids.</p>\",\"PeriodicalId\":48930,\"journal\":{\"name\":\"Ecosphere\",\"volume\":\"15 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.4971\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecs2.4971\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosphere","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecs2.4971","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

气候变化、营养污染和土地利用的改变影响着湖泊的初级生产。尽管光学显微镜计数法仍是估算浮游植物群落组成的标准方法,但由于其昂贵和耗时的特性,有必要采用具有成本效益的替代方法来分析淤泥。此外,光镜计数法还无法估算除初级生产者或非藻类颗粒之外的其他沉积物成分。在不需要物种分类的情况下,使用计算方法和类胡萝卜素色素和脂肪酸等化学分类生物标记物的生物示踪法已被作为一种替代方法用于淤泥分析。然而,对于类胡萝卜素和脂肪酸如何利用不同的估算方法来估算各种浮游植物群落,目前还缺乏全面的测试。为了评估一套最先进的基于生物示踪剂的计算方法(即 CHEMTAX、FASTAR(R 中的脂肪酸源追踪算法)、MixSIAR 和 QFASA(定量脂肪酸特征分析))的准确性,分别于 2016 年、2018 年、2019 年、2020 年和 2021 年在一个北方富营养化湖泊中采集了湖泊水样,进行底栖生物组成分析,并以光镜计数作为底栖生物组成的参考。计算了基于生物示踪剂的估算值之间的绝对误差,以评估方法的性能。此外,还进行了一项小型实验室实验,以评估使用脂肪酸计算方法估算非藻类颗粒贡献的可靠性。在 QFASA 方法中同时使用类胡萝卜素和脂肪酸时,绝对误差与光学显微镜计数最为接近。对于 CHEMTAX、FASTAR 和 MixSIAR,单独使用类胡萝卜素得出的结果最为接近。此外,在使用脂肪酸图谱时,估算方法还能准确评估底栖生物中非藻类颗粒的比例,而这是光镜计数法无法实现的。我们的研究结果表明,当需要浮游植物群落组成的群体级信息时,生物示踪剂方法是替代光镜计数的一种可行且具有成本效益的方法。此外,我们还发现,在使用脂肪酸时,非藻类颗粒也能与浮游植物一起得到有效估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating pigment and fatty acid profiles for enhanced estimation of seston community composition

Climate change, nutrition pollution, and land use alterations influence the primary production of lakes. While light-microscopy counting remains the standard for estimating phytoplankton community composition, its expense and time-consuming nature necessitate cost-effective alternatives for seston analysis. Furthermore, estimating the contribution of seston constituents other than primary producers, or non-algal particles, is not possible with light-microscopy counting. Biotracer approach using computational methods and chemotaxonomic biomarkers such as carotenoid pigments and fatty acids have been used as an alternative in seston analysis when species-level taxonomy is not required. However, a comprehensive testing of how well carotenoid and fatty acids can be used in estimating a wide range of seston phytoplankton communities using different estimation methods is lacking. To assess the accuracy of a suite of state-of-the-art biotracer-based computational methods, namely CHEMTAX, FASTAR (Fatty Acid Source-Tracking Algorithm in R), MixSIAR, and QFASA (Quantitative Fatty Acid Signature Analysis), lake water samples were collected in 2016, 2018, 2019, 2020, and 2021 for seston composition analysis in a boreal eutrophic lake with light-microscopy counting serving as the reference for seston composition. Absolute errors between the biotracer-based estimates were calculated to evaluate method performance. A small laboratory experiment to assess the reliability of estimating the contribution of non-algal particles using the computational methods with fatty acids was also conducted. The closest alignment to light-microscopy counting in terms of absolute error was achieved when both carotenoids and fatty acids were used together in the QFASA method. For CHEMTAX, FASTAR, and MixSIAR, using carotenoids alone produced the closest results. Additionally, the estimation methods accurately assessed the proportion of non-algal particles in the seston when using fatty acid profiles, a capability not possible with light-microscopy counting. Our findings demonstrate that the biotracer approach provides a viable and cost-effective alternative to light-microscopy counting when group-level information of phytoplankton community composition suffices. Furthermore, we show that non-algal particles can be effectively estimated together with phytoplankton when using fatty acids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecosphere
Ecosphere ECOLOGY-
CiteScore
4.70
自引率
3.70%
发文量
378
审稿时长
15 weeks
期刊介绍: The scope of Ecosphere is as broad as the science of ecology itself. The journal welcomes submissions from all sub-disciplines of ecological science, as well as interdisciplinary studies relating to ecology. The journal''s goal is to provide a rapid-publication, online-only, open-access alternative to ESA''s other journals, while maintaining the rigorous standards of peer review for which ESA publications are renowned.
期刊最新文献
Variation in habitat selection among individuals differs by maternal status for moose in a region with low calf survival Variation in forest patch habitat quality for white-footed mice driven by invasive plants in an urbanizing landscape Landscape use by prey: Bottom-up regulation prevails under reduced predation risk Understanding the effects of livestock grazing on dryland plant communities within the context of abiotic variability Full life cycle assessment of insect biomass allows estimation of bioflows across water, air, and land
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1