同步尺度动力学对南高纬度地区云和辐射的影响

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Geophysical Research: Atmospheres Pub Date : 2024-08-14 DOI:10.1029/2023JD040329
Tyler Barone, Minghui Diao, Yang Shi, Xi Zhao, Xiaohong Liu, Israel Silber
{"title":"同步尺度动力学对南高纬度地区云和辐射的影响","authors":"Tyler Barone,&nbsp;Minghui Diao,&nbsp;Yang Shi,&nbsp;Xi Zhao,&nbsp;Xiaohong Liu,&nbsp;Israel Silber","doi":"10.1029/2023JD040329","DOIUrl":null,"url":null,"abstract":"<p>High-latitudinal mixed-phase clouds significantly affect Earth's radiative balance. Observations of cloud and radiative properties from two field campaigns in the Southern Ocean and Antarctica were compared with two global climate model simulations. A cyclone compositing method was used to quantify “dynamics-cloud-radiation” relationships relative to the extratropical cyclone centers. Observations show larger asymmetry in cloud and radiative properties between western and eastern sectors at McMurdo compared with Macquarie Island. Most observed quantities at McMurdo are higher in the western (i.e., post-frontal) than the eastern (frontal) sector, including cloud fraction, liquid water path (LWP), net surface shortwave and longwave radiation (SW and LW), except for ice water path (IWP) being higher in the eastern sector. The two models were found to overestimate cloud fraction and LWP at Macquarie Island but underestimate them at McMurdo Station. IWP is consistently underestimated at both locations, both sectors, and in all seasons. Biases of cloud fraction, LWP, and IWP are negatively correlated with SW biases and positively correlated with LW biases. The persistent negative IWP biases may have become one of the leading causes of radiative biases over the high southern latitudes, after correcting the underestimation of supercooled liquid water in the older model versions. By examining multi-scale factors from cloud microphysics to synoptic dynamics, this work will help increase the fidelity of climate simulations in this remote region.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of Synoptic-Scale Dynamics on Clouds and Radiation in High Southern Latitudes\",\"authors\":\"Tyler Barone,&nbsp;Minghui Diao,&nbsp;Yang Shi,&nbsp;Xi Zhao,&nbsp;Xiaohong Liu,&nbsp;Israel Silber\",\"doi\":\"10.1029/2023JD040329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-latitudinal mixed-phase clouds significantly affect Earth's radiative balance. Observations of cloud and radiative properties from two field campaigns in the Southern Ocean and Antarctica were compared with two global climate model simulations. A cyclone compositing method was used to quantify “dynamics-cloud-radiation” relationships relative to the extratropical cyclone centers. Observations show larger asymmetry in cloud and radiative properties between western and eastern sectors at McMurdo compared with Macquarie Island. Most observed quantities at McMurdo are higher in the western (i.e., post-frontal) than the eastern (frontal) sector, including cloud fraction, liquid water path (LWP), net surface shortwave and longwave radiation (SW and LW), except for ice water path (IWP) being higher in the eastern sector. The two models were found to overestimate cloud fraction and LWP at Macquarie Island but underestimate them at McMurdo Station. IWP is consistently underestimated at both locations, both sectors, and in all seasons. Biases of cloud fraction, LWP, and IWP are negatively correlated with SW biases and positively correlated with LW biases. The persistent negative IWP biases may have become one of the leading causes of radiative biases over the high southern latitudes, after correcting the underestimation of supercooled liquid water in the older model versions. By examining multi-scale factors from cloud microphysics to synoptic dynamics, this work will help increase the fidelity of climate simulations in this remote region.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023JD040329\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JD040329","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

高纬度混合相云对地球的辐射平衡有重大影响。在南大洋和南极洲进行的两次实地观测活动中观测到的云和辐射特性与两个全球气候模式模拟结果进行了比较。采用气旋合成法来量化相对于外热带气旋中心的 "动态-云-辐射 "关系。观测结果表明,与麦夸里岛相比,麦克默多西部和东部地区的云层和辐射特性更不对称。麦克默多的大部分观测数据,包括云量、液态水路径(LWP)、净表面短波和长波辐射(SW 和 LW),都是西部(即后锋面)高于东部(锋面),只有冰态水路径(IWP)高于东部。研究发现,两种模式都高估了麦夸里岛的云量和冰水路径,但低估了麦克默多站的云量和冰水路径。在两个地点、两个扇区和所有季节,IWP 始终被低估。云分、最低温度和国际工作面偏差与西南偏差呈负相关,与最低温度偏差呈正相关。在修正了老版本模式中低估的过冷液态水之后,持续的负IWP偏差可能已成为南纬高纬度地区辐射偏差的主要原因之一。通过研究从云微观物理到同步动力学的多尺度因素,这项工作将有助于提高这一偏远地区气候模拟的保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impacts of Synoptic-Scale Dynamics on Clouds and Radiation in High Southern Latitudes

High-latitudinal mixed-phase clouds significantly affect Earth's radiative balance. Observations of cloud and radiative properties from two field campaigns in the Southern Ocean and Antarctica were compared with two global climate model simulations. A cyclone compositing method was used to quantify “dynamics-cloud-radiation” relationships relative to the extratropical cyclone centers. Observations show larger asymmetry in cloud and radiative properties between western and eastern sectors at McMurdo compared with Macquarie Island. Most observed quantities at McMurdo are higher in the western (i.e., post-frontal) than the eastern (frontal) sector, including cloud fraction, liquid water path (LWP), net surface shortwave and longwave radiation (SW and LW), except for ice water path (IWP) being higher in the eastern sector. The two models were found to overestimate cloud fraction and LWP at Macquarie Island but underestimate them at McMurdo Station. IWP is consistently underestimated at both locations, both sectors, and in all seasons. Biases of cloud fraction, LWP, and IWP are negatively correlated with SW biases and positively correlated with LW biases. The persistent negative IWP biases may have become one of the leading causes of radiative biases over the high southern latitudes, after correcting the underestimation of supercooled liquid water in the older model versions. By examining multi-scale factors from cloud microphysics to synoptic dynamics, this work will help increase the fidelity of climate simulations in this remote region.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
期刊最新文献
Historical Simulation and Future Projection of Arctic-Boreal Fire Carbon Emissions and Related Surface Climate by 17 CMIP6 ESMs Unveiling the Urban Impact on Mesoscale Convective System Rainfall in the Pearl River Delta Urban Agglomeration Under Typical Synoptic Backgrounds Global Temperature Dependency of Biogenic HCHO Columns Observed From Space: Interpretation of TROPOMI Results Using GEOS-Chem Model Evaluation of 10-m Wind Speed From ISD Meteorological Stations and the MERRA-2 Reanalysis: Impacts on Dust Emission in the Arabian Peninsula Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1