Zhengyi Mao, Qiliang Wang, Zhen Yu, Amr Osman, Yao Yao, Yuehong Su, Hongxing Yang, Jian Lu
{"title":"面向实际应用的高性能太阳能驱动水电联产:从微米/纳米材料到其他材料。","authors":"Zhengyi Mao, Qiliang Wang, Zhen Yu, Amr Osman, Yao Yao, Yuehong Su, Hongxing Yang, Jian Lu","doi":"10.1021/acsnano.4c06339","DOIUrl":null,"url":null,"abstract":"<p><p>Solar-driven water-electricity cogeneration is a promising strategy for tackling water scarcity and power shortages. However, comprehensive reviews on performance, scalability, commercialization, and power density are lacking. This Perspective presents an overview of recent developments and insights into the challenges and future outlooks for practical applications in this area. We summarize recent advances in high-efficiency water production, focusing on rapid evaporation and condensation. Then we categorize power-water cogeneration systems by power generation mechanisms like steam, evaporation, salinity gradient, photovoltaics, and temperature gradient, providing a comprehensive summary of the performance and applicability of these systems in different scenarios. Finally, we highlight challenges in current systems, considering nanoscale mechanisms and large-scale manufacturing, while also exploring potential trends for future practical applications.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Performance Solar-Driven Power-Water Cogeneration for Practical Application: From Micro/Nano Materials to Beyond.\",\"authors\":\"Zhengyi Mao, Qiliang Wang, Zhen Yu, Amr Osman, Yao Yao, Yuehong Su, Hongxing Yang, Jian Lu\",\"doi\":\"10.1021/acsnano.4c06339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Solar-driven water-electricity cogeneration is a promising strategy for tackling water scarcity and power shortages. However, comprehensive reviews on performance, scalability, commercialization, and power density are lacking. This Perspective presents an overview of recent developments and insights into the challenges and future outlooks for practical applications in this area. We summarize recent advances in high-efficiency water production, focusing on rapid evaporation and condensation. Then we categorize power-water cogeneration systems by power generation mechanisms like steam, evaporation, salinity gradient, photovoltaics, and temperature gradient, providing a comprehensive summary of the performance and applicability of these systems in different scenarios. Finally, we highlight challenges in current systems, considering nanoscale mechanisms and large-scale manufacturing, while also exploring potential trends for future practical applications.</p>\",\"PeriodicalId\":15,\"journal\":{\"name\":\"ACS Earth and Space Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Earth and Space Chemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c06339\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c06339","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
High Performance Solar-Driven Power-Water Cogeneration for Practical Application: From Micro/Nano Materials to Beyond.
Solar-driven water-electricity cogeneration is a promising strategy for tackling water scarcity and power shortages. However, comprehensive reviews on performance, scalability, commercialization, and power density are lacking. This Perspective presents an overview of recent developments and insights into the challenges and future outlooks for practical applications in this area. We summarize recent advances in high-efficiency water production, focusing on rapid evaporation and condensation. Then we categorize power-water cogeneration systems by power generation mechanisms like steam, evaporation, salinity gradient, photovoltaics, and temperature gradient, providing a comprehensive summary of the performance and applicability of these systems in different scenarios. Finally, we highlight challenges in current systems, considering nanoscale mechanisms and large-scale manufacturing, while also exploring potential trends for future practical applications.
期刊介绍:
The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.