Wenjie Yao;Ankang Wei;Zhen Xiao;Weizhong Zhao;Xianjun Shen;Xingpeng Jiang;Tingting He
{"title":"通过基于反事实推理的数据扩充,改进药物副作用关联预测框架。","authors":"Wenjie Yao;Ankang Wei;Zhen Xiao;Weizhong Zhao;Xianjun Shen;Xingpeng Jiang;Tingting He","doi":"10.1109/TNB.2024.3443244","DOIUrl":null,"url":null,"abstract":"Detecting side effects of drugs is a fundamental task in drug development. With the expansion of publicly available biomedical data, researchers have proposed many computational methods for predicting drug-side effect associations (DSAs), among which network-based methods attract wide attention in the biomedical field. However, the problem of data scarcity poses a great challenge for existing DSAs prediction models. Although several data augmentation methods have been proposed to address this issue, most of existing methods employ a random way to manipulate the original networks, which ignores the causality of existence of DSAs, leading to the poor performance on the task of DSAs prediction. In this paper, we propose a counterfactual inference-based data augmentation method for improving the performance of the task. First, we construct a heterogeneous information network (HIN) by integrating multiple biomedical data. Based on the community detection on the HIN, a counterfactual inference-based method is designed to derive augmented links, and an augmented HIN is obtained accordingly. Then, a meta-path-based graph neural network is applied to learn high-quality representations of drugs and side effects, on which the predicted DSAs are obtained. Finally, comprehensive experiments are conducted, and the results demonstrate the effectiveness of the proposed counterfactual inference-based data augmentation for the task of DSAs prediction.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"540-547"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Framework for Drug-Side Effect Associations Prediction via Counterfactual Inference-Based Data Augmentation\",\"authors\":\"Wenjie Yao;Ankang Wei;Zhen Xiao;Weizhong Zhao;Xianjun Shen;Xingpeng Jiang;Tingting He\",\"doi\":\"10.1109/TNB.2024.3443244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting side effects of drugs is a fundamental task in drug development. With the expansion of publicly available biomedical data, researchers have proposed many computational methods for predicting drug-side effect associations (DSAs), among which network-based methods attract wide attention in the biomedical field. However, the problem of data scarcity poses a great challenge for existing DSAs prediction models. Although several data augmentation methods have been proposed to address this issue, most of existing methods employ a random way to manipulate the original networks, which ignores the causality of existence of DSAs, leading to the poor performance on the task of DSAs prediction. In this paper, we propose a counterfactual inference-based data augmentation method for improving the performance of the task. First, we construct a heterogeneous information network (HIN) by integrating multiple biomedical data. Based on the community detection on the HIN, a counterfactual inference-based method is designed to derive augmented links, and an augmented HIN is obtained accordingly. Then, a meta-path-based graph neural network is applied to learn high-quality representations of drugs and side effects, on which the predicted DSAs are obtained. Finally, comprehensive experiments are conducted, and the results demonstrate the effectiveness of the proposed counterfactual inference-based data augmentation for the task of DSAs prediction.\",\"PeriodicalId\":13264,\"journal\":{\"name\":\"IEEE Transactions on NanoBioscience\",\"volume\":\"23 4\",\"pages\":\"540-547\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on NanoBioscience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10636341/\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://ieeexplore.ieee.org/document/10636341/","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
An Improved Framework for Drug-Side Effect Associations Prediction via Counterfactual Inference-Based Data Augmentation
Detecting side effects of drugs is a fundamental task in drug development. With the expansion of publicly available biomedical data, researchers have proposed many computational methods for predicting drug-side effect associations (DSAs), among which network-based methods attract wide attention in the biomedical field. However, the problem of data scarcity poses a great challenge for existing DSAs prediction models. Although several data augmentation methods have been proposed to address this issue, most of existing methods employ a random way to manipulate the original networks, which ignores the causality of existence of DSAs, leading to the poor performance on the task of DSAs prediction. In this paper, we propose a counterfactual inference-based data augmentation method for improving the performance of the task. First, we construct a heterogeneous information network (HIN) by integrating multiple biomedical data. Based on the community detection on the HIN, a counterfactual inference-based method is designed to derive augmented links, and an augmented HIN is obtained accordingly. Then, a meta-path-based graph neural network is applied to learn high-quality representations of drugs and side effects, on which the predicted DSAs are obtained. Finally, comprehensive experiments are conducted, and the results demonstrate the effectiveness of the proposed counterfactual inference-based data augmentation for the task of DSAs prediction.
期刊介绍:
The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).