{"title":"种间竞争模型和个体间的资源不平等。","authors":"Masahiro Anazawa","doi":"10.1098/rsos.240501","DOIUrl":null,"url":null,"abstract":"<p><p>Most classical discrete-time population models of interspecific competition have emerged as population-level phenomenological models with no evident basis at the individual level. This study shows that the Hassell-Comins model, a widely used discrete-time model of interspecific competition, can be derived in a bottom-up manner from a simple model of random resource competition between individuals of two species as an expression of expected population sizes in the next generation. The random competition leads to inequalities in resource allocation between individuals, which are related to the key parameters of the Hassell-Comins model that determine the density dependence of each species. The relationship between population-level parameters, such as intra- and interspecific competition coefficients, and individual-level parameters is discussed in detail, as is how the derived competition equations depend on the degree of inequality within each species. By considering limits of maximum or minimum resource inequality within each species, the derived model can describe interspecific competition for various combinations of two species exhibiting ideal scramble or ideal contest intraspecific competition.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321858/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interspecific competition models and resource inequality between individuals.\",\"authors\":\"Masahiro Anazawa\",\"doi\":\"10.1098/rsos.240501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most classical discrete-time population models of interspecific competition have emerged as population-level phenomenological models with no evident basis at the individual level. This study shows that the Hassell-Comins model, a widely used discrete-time model of interspecific competition, can be derived in a bottom-up manner from a simple model of random resource competition between individuals of two species as an expression of expected population sizes in the next generation. The random competition leads to inequalities in resource allocation between individuals, which are related to the key parameters of the Hassell-Comins model that determine the density dependence of each species. The relationship between population-level parameters, such as intra- and interspecific competition coefficients, and individual-level parameters is discussed in detail, as is how the derived competition equations depend on the degree of inequality within each species. By considering limits of maximum or minimum resource inequality within each species, the derived model can describe interspecific competition for various combinations of two species exhibiting ideal scramble or ideal contest intraspecific competition.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321858/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.240501\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240501","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Interspecific competition models and resource inequality between individuals.
Most classical discrete-time population models of interspecific competition have emerged as population-level phenomenological models with no evident basis at the individual level. This study shows that the Hassell-Comins model, a widely used discrete-time model of interspecific competition, can be derived in a bottom-up manner from a simple model of random resource competition between individuals of two species as an expression of expected population sizes in the next generation. The random competition leads to inequalities in resource allocation between individuals, which are related to the key parameters of the Hassell-Comins model that determine the density dependence of each species. The relationship between population-level parameters, such as intra- and interspecific competition coefficients, and individual-level parameters is discussed in detail, as is how the derived competition equations depend on the degree of inequality within each species. By considering limits of maximum or minimum resource inequality within each species, the derived model can describe interspecific competition for various combinations of two species exhibiting ideal scramble or ideal contest intraspecific competition.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.