K L Chen, J C Jiang, W C Jiang, L J Wang, S W Li, Z W Liu, Y Y Gu, G J Zhang
{"title":"[脑脊液中的寡克隆带和鞘内 IgG 合成指标与生化标记物在多发性硬化症诊断中的联合应用]。","authors":"K L Chen, J C Jiang, W C Jiang, L J Wang, S W Li, Z W Liu, Y Y Gu, G J Zhang","doi":"10.3760/cma.j.cn112150-20231212-00433","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> To establish and verify a diagnostic model for distinguishing multiple sclerosis (MS) from other neurological diseases with similar symptoms by usingcerebrospinal fluid oligoclonal band (CSF-OCB)combined with IgG intrathecal synthesis indicators and biochemical markers. <b>Methods:</b> Multiple sclerosis (MS) patients admitted to the Neurology Department of Beijing Tiantan Hospital affiliated with Capital Medical University from January 2014 to December 2022 were selected as the case group, while patients with similar neurological symptoms were selected as the control group. Using the case-control study design, a retrospective analysis was conducted on the detection of age, gender, oligoclonal bands in cerebrospinal fluid, IgG intrathecal synthesis indicators and biochemical indicators for all study subjects. The differential diagnosis model was determined by the multiple logistic regression analysis, and the receiver operating characteristic (ROC) curve was used to analyze the diagnostic efficiency of the differential diagnosis model for neurological diseases with similar symptoms to MS and other conditions. <b>Results:</b> This study included 167 patients in the case group and 335 patients in the control group, of which 128 patients in the case group and 265 patients in the control group were used to construct the model, and 39 patients in the case group and 70 patients in the control group were used for model validation. The differential diagnostic model constructed by a multivariate logistic regression model was Y=0.871×CSF-OCB-0.051×CSFprotein-0.231×CSFchloride+1.183×gender-0.036×LDH+35.770. The model showed that the area under the curve, sensitivity and specificity were respectively 0.916, 87.3% and 87.6%. The Delong test results showed that the diagnostic efficacy of the model was significantly different from OCB, IgG intrathecal synthesis indicators, and OCB combined with IgG intrathecal synthesis indicators (<i>P</i><0.05). The new model validation showed that the actual diagnostic consistency rate for the MS group was 84.6%, while the actual diagnostic consistency rate for the control group was 90.0%. <b>Conclusion:</b> This study combines OCB, IgG intrathecal synthesis indicators, and biochemical indicators to establish a diagnostic prediction model for neurological diseases with similar clinical symptoms in MS. This model may have good differential diagnostic value and can better assist clinical diagnosis in the early stages of disease progression in MS patients.</p>","PeriodicalId":24033,"journal":{"name":"中华预防医学杂志","volume":"58 8","pages":"1171-1176"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[The combined application of oligoclonal bands in cerebrospinal fluid and IgG intrathecal synthesis indicators and biochemical markers in the diagnosis of multiple sclerosis].\",\"authors\":\"K L Chen, J C Jiang, W C Jiang, L J Wang, S W Li, Z W Liu, Y Y Gu, G J Zhang\",\"doi\":\"10.3760/cma.j.cn112150-20231212-00433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> To establish and verify a diagnostic model for distinguishing multiple sclerosis (MS) from other neurological diseases with similar symptoms by usingcerebrospinal fluid oligoclonal band (CSF-OCB)combined with IgG intrathecal synthesis indicators and biochemical markers. <b>Methods:</b> Multiple sclerosis (MS) patients admitted to the Neurology Department of Beijing Tiantan Hospital affiliated with Capital Medical University from January 2014 to December 2022 were selected as the case group, while patients with similar neurological symptoms were selected as the control group. Using the case-control study design, a retrospective analysis was conducted on the detection of age, gender, oligoclonal bands in cerebrospinal fluid, IgG intrathecal synthesis indicators and biochemical indicators for all study subjects. The differential diagnosis model was determined by the multiple logistic regression analysis, and the receiver operating characteristic (ROC) curve was used to analyze the diagnostic efficiency of the differential diagnosis model for neurological diseases with similar symptoms to MS and other conditions. <b>Results:</b> This study included 167 patients in the case group and 335 patients in the control group, of which 128 patients in the case group and 265 patients in the control group were used to construct the model, and 39 patients in the case group and 70 patients in the control group were used for model validation. The differential diagnostic model constructed by a multivariate logistic regression model was Y=0.871×CSF-OCB-0.051×CSFprotein-0.231×CSFchloride+1.183×gender-0.036×LDH+35.770. The model showed that the area under the curve, sensitivity and specificity were respectively 0.916, 87.3% and 87.6%. The Delong test results showed that the diagnostic efficacy of the model was significantly different from OCB, IgG intrathecal synthesis indicators, and OCB combined with IgG intrathecal synthesis indicators (<i>P</i><0.05). The new model validation showed that the actual diagnostic consistency rate for the MS group was 84.6%, while the actual diagnostic consistency rate for the control group was 90.0%. <b>Conclusion:</b> This study combines OCB, IgG intrathecal synthesis indicators, and biochemical indicators to establish a diagnostic prediction model for neurological diseases with similar clinical symptoms in MS. This model may have good differential diagnostic value and can better assist clinical diagnosis in the early stages of disease progression in MS patients.</p>\",\"PeriodicalId\":24033,\"journal\":{\"name\":\"中华预防医学杂志\",\"volume\":\"58 8\",\"pages\":\"1171-1176\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中华预防医学杂志\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3760/cma.j.cn112150-20231212-00433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华预防医学杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/cma.j.cn112150-20231212-00433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[The combined application of oligoclonal bands in cerebrospinal fluid and IgG intrathecal synthesis indicators and biochemical markers in the diagnosis of multiple sclerosis].
Objective: To establish and verify a diagnostic model for distinguishing multiple sclerosis (MS) from other neurological diseases with similar symptoms by usingcerebrospinal fluid oligoclonal band (CSF-OCB)combined with IgG intrathecal synthesis indicators and biochemical markers. Methods: Multiple sclerosis (MS) patients admitted to the Neurology Department of Beijing Tiantan Hospital affiliated with Capital Medical University from January 2014 to December 2022 were selected as the case group, while patients with similar neurological symptoms were selected as the control group. Using the case-control study design, a retrospective analysis was conducted on the detection of age, gender, oligoclonal bands in cerebrospinal fluid, IgG intrathecal synthesis indicators and biochemical indicators for all study subjects. The differential diagnosis model was determined by the multiple logistic regression analysis, and the receiver operating characteristic (ROC) curve was used to analyze the diagnostic efficiency of the differential diagnosis model for neurological diseases with similar symptoms to MS and other conditions. Results: This study included 167 patients in the case group and 335 patients in the control group, of which 128 patients in the case group and 265 patients in the control group were used to construct the model, and 39 patients in the case group and 70 patients in the control group were used for model validation. The differential diagnostic model constructed by a multivariate logistic regression model was Y=0.871×CSF-OCB-0.051×CSFprotein-0.231×CSFchloride+1.183×gender-0.036×LDH+35.770. The model showed that the area under the curve, sensitivity and specificity were respectively 0.916, 87.3% and 87.6%. The Delong test results showed that the diagnostic efficacy of the model was significantly different from OCB, IgG intrathecal synthesis indicators, and OCB combined with IgG intrathecal synthesis indicators (P<0.05). The new model validation showed that the actual diagnostic consistency rate for the MS group was 84.6%, while the actual diagnostic consistency rate for the control group was 90.0%. Conclusion: This study combines OCB, IgG intrathecal synthesis indicators, and biochemical indicators to establish a diagnostic prediction model for neurological diseases with similar clinical symptoms in MS. This model may have good differential diagnostic value and can better assist clinical diagnosis in the early stages of disease progression in MS patients.
期刊介绍:
Chinese Journal of Preventive Medicine (CJPM), the successor to Chinese Health Journal , was initiated on October 1, 1953. In 1960, it was amalgamated with the Chinese Medical Journal and the Journal of Medical History and Health Care , and thereafter, was renamed as People’s Care . On November 25, 1978, the publication was denominated as Chinese Journal of Preventive Medicine . The contents of CJPM deal with a wide range of disciplines and technologies including epidemiology, environmental health, nutrition and food hygiene, occupational health, hygiene for children and adolescents, radiological health, toxicology, biostatistics, social medicine, pathogenic and epidemiological research in malignant tumor, surveillance and immunization.