{"title":"水蒸发对含水聚烷二醇弹性流体动力润滑的影响","authors":"Stefan Hofmann, Thomas Lohner, Karsten Stahl","doi":"10.1007/s40544-024-0916-1","DOIUrl":null,"url":null,"abstract":"<p>The reduction of frictional power losses in power transmitting gears takes a crucial role in the design of energy- and resource-efficient drivetrains. Water-containing lubricants like glycerol and polyalkylene glycols have shown great potential in achieving friction within the superlubricity regime with coefficients of friction lower than 0.01 under elastohydrodynamic lubrication. Additionally, a bio-based production of the base stocks can lead to the development of green lubricants. However, one challenge associated with the application of water-containing lubricants to gearboxes is the evaporation of water and its impact on the lubricant properties. In this study, the influence of water evaporation on elastohydrodynamic friction and film thickness was investigated for three water-containing polyalkylene glycols. Two nominal water contents of 20 wt% and 40 wt% and two viscosities were considered. The results show that the friction increases continuously with higher evaporated water content, while the overall friction level remains low in nearly water-free states. A similar trend is observed for film thickness, where the strong increase in viscosity results in a notable increase in film thickness. Nevertheless, the sensitivity of friction and film thickness to water evaporation is low for small amounts of evaporated water. This allows generous thresholds for permissible variations in water content.\n</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"36 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of water evaporation on elastohydrodynamic lubrication with water-containing polyalkylene glycols\",\"authors\":\"Stefan Hofmann, Thomas Lohner, Karsten Stahl\",\"doi\":\"10.1007/s40544-024-0916-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The reduction of frictional power losses in power transmitting gears takes a crucial role in the design of energy- and resource-efficient drivetrains. Water-containing lubricants like glycerol and polyalkylene glycols have shown great potential in achieving friction within the superlubricity regime with coefficients of friction lower than 0.01 under elastohydrodynamic lubrication. Additionally, a bio-based production of the base stocks can lead to the development of green lubricants. However, one challenge associated with the application of water-containing lubricants to gearboxes is the evaporation of water and its impact on the lubricant properties. In this study, the influence of water evaporation on elastohydrodynamic friction and film thickness was investigated for three water-containing polyalkylene glycols. Two nominal water contents of 20 wt% and 40 wt% and two viscosities were considered. The results show that the friction increases continuously with higher evaporated water content, while the overall friction level remains low in nearly water-free states. A similar trend is observed for film thickness, where the strong increase in viscosity results in a notable increase in film thickness. Nevertheless, the sensitivity of friction and film thickness to water evaporation is low for small amounts of evaporated water. This allows generous thresholds for permissible variations in water content.\\n</p>\",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40544-024-0916-1\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-024-0916-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Influence of water evaporation on elastohydrodynamic lubrication with water-containing polyalkylene glycols
The reduction of frictional power losses in power transmitting gears takes a crucial role in the design of energy- and resource-efficient drivetrains. Water-containing lubricants like glycerol and polyalkylene glycols have shown great potential in achieving friction within the superlubricity regime with coefficients of friction lower than 0.01 under elastohydrodynamic lubrication. Additionally, a bio-based production of the base stocks can lead to the development of green lubricants. However, one challenge associated with the application of water-containing lubricants to gearboxes is the evaporation of water and its impact on the lubricant properties. In this study, the influence of water evaporation on elastohydrodynamic friction and film thickness was investigated for three water-containing polyalkylene glycols. Two nominal water contents of 20 wt% and 40 wt% and two viscosities were considered. The results show that the friction increases continuously with higher evaporated water content, while the overall friction level remains low in nearly water-free states. A similar trend is observed for film thickness, where the strong increase in viscosity results in a notable increase in film thickness. Nevertheless, the sensitivity of friction and film thickness to water evaporation is low for small amounts of evaporated water. This allows generous thresholds for permissible variations in water content.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.