David Meijer, Mehdi A Beniddir, Connor W Coley, Yassine M Mejri, Meltem Öztürk, Justin J J van der Hooft, Marnix H Medema, Adam Skiredj
{"title":"用人工智能增强自然产品科学:利用多模态数据和知识图谱。","authors":"David Meijer, Mehdi A Beniddir, Connor W Coley, Yassine M Mejri, Meltem Öztürk, Justin J J van der Hooft, Marnix H Medema, Adam Skiredj","doi":"10.1039/d4np00008k","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) is accelerating how we conduct science, from folding proteins with AlphaFold and summarizing literature findings with large language models, to annotating genomes and prioritizing newly generated molecules for screening using specialized software. However, the application of AI to emulate human cognition in natural product research and its subsequent impact has so far been limited. One reason for this limited impact is that available natural product data is multimodal, unbalanced, unstandardized, and scattered across many data repositories. This makes natural product data challenging to use with existing deep learning architectures that consume fairly standardized, often non-relational, data. It also prevents models from learning overarching patterns in natural product science. In this Viewpoint, we address this challenge and support ongoing initiatives aimed at democratizing natural product data by collating our collective knowledge into a knowledge graph. By doing so, we believe there will be an opportunity to use such a knowledge graph to develop AI models that can truly mimic natural product scientists' decision-making.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327853/pdf/","citationCount":"0","resultStr":"{\"title\":\"Empowering natural product science with AI: leveraging multimodal data and knowledge graphs.\",\"authors\":\"David Meijer, Mehdi A Beniddir, Connor W Coley, Yassine M Mejri, Meltem Öztürk, Justin J J van der Hooft, Marnix H Medema, Adam Skiredj\",\"doi\":\"10.1039/d4np00008k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) is accelerating how we conduct science, from folding proteins with AlphaFold and summarizing literature findings with large language models, to annotating genomes and prioritizing newly generated molecules for screening using specialized software. However, the application of AI to emulate human cognition in natural product research and its subsequent impact has so far been limited. One reason for this limited impact is that available natural product data is multimodal, unbalanced, unstandardized, and scattered across many data repositories. This makes natural product data challenging to use with existing deep learning architectures that consume fairly standardized, often non-relational, data. It also prevents models from learning overarching patterns in natural product science. In this Viewpoint, we address this challenge and support ongoing initiatives aimed at democratizing natural product data by collating our collective knowledge into a knowledge graph. By doing so, we believe there will be an opportunity to use such a knowledge graph to develop AI models that can truly mimic natural product scientists' decision-making.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327853/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4np00008k\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4np00008k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Empowering natural product science with AI: leveraging multimodal data and knowledge graphs.
Artificial intelligence (AI) is accelerating how we conduct science, from folding proteins with AlphaFold and summarizing literature findings with large language models, to annotating genomes and prioritizing newly generated molecules for screening using specialized software. However, the application of AI to emulate human cognition in natural product research and its subsequent impact has so far been limited. One reason for this limited impact is that available natural product data is multimodal, unbalanced, unstandardized, and scattered across many data repositories. This makes natural product data challenging to use with existing deep learning architectures that consume fairly standardized, often non-relational, data. It also prevents models from learning overarching patterns in natural product science. In this Viewpoint, we address this challenge and support ongoing initiatives aimed at democratizing natural product data by collating our collective knowledge into a knowledge graph. By doing so, we believe there will be an opportunity to use such a knowledge graph to develop AI models that can truly mimic natural product scientists' decision-making.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.