{"title":"利用 Sepioteuthis lessoniana 墨水生产生物基纳米银粒子(AgNPs)的生态友好战略,以及染料的生物和降解应用。","authors":"Sital Khandelwal, Naorem Rojita Devi, Srinivasan Pappu","doi":"10.1007/s12010-024-05001-6","DOIUrl":null,"url":null,"abstract":"<p><p>The squid, Sepioteuthis lessoniana, is a remarkable fishery product which is exported by many nations for use in industrial production or human consumption. This study focused on the synthesis of silver nanoparticles (AgNPs) from squid ink (SI) and its wide range of applications. The formation of the nanoparticles was confirmed through UV-Visible spectroscopy, FTIR, XRD, SEM with EDX, DLS, and zeta potential analysis. The results showed a strong absorbance peak at 407 nm, the presence of various functional groups, a nanocrystalline structure with a crystalline size of 17.56 nm, spherical-shaped particles with an average size of 76 nm, and the presence of the highest % mass of Ag and uniformly dispersed particles, respectively. The bioactivity of the synthesized squid ink silver nanoparticles was analyzed through antibacterial, antioxidant, anticancer, and toxicity studies. The dye degradation assay was also analyzed as a means of wastewater treatment for different industrial dyes. The antibacterial activity showed the highest zone of inhibition of 24 mm at a concentration of 100 μg/ml against Escherichia coli, followed by other tested strains. The nitric oxide radical scavenging assay showed the highest antioxidant activity (92%) at a concentration of 100 μg/ml. The cytotoxic ability of SI-AgNPs against the MDA-MB-231 breast cancer cell line revealed an IC<sub>50</sub> value of 4.52 μg/ml. The toxicity study revealed a dose and time-dependent activity with the LC<sub>50</sub> value of 5.090 and 3.303 mg/ml for 24 and 48 h, respectively. The successful degradation of dyes by SI-AgNPs is attributed to the cooperative action of the electron relay system with Ag as a catalyst and SI as a catalytic support. These findings indicate that SI-AgNPs are a novel potential product that should be further studied to improve its pharmacological, biomedical, and environmental applications.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco-friendly Strategy for Producing Bio-based Silver Nanoparticles (AgNPs) Employing Sepioteuthis lessoniana ink, in Addition to Biological and Degradation of Dye Applications.\",\"authors\":\"Sital Khandelwal, Naorem Rojita Devi, Srinivasan Pappu\",\"doi\":\"10.1007/s12010-024-05001-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The squid, Sepioteuthis lessoniana, is a remarkable fishery product which is exported by many nations for use in industrial production or human consumption. This study focused on the synthesis of silver nanoparticles (AgNPs) from squid ink (SI) and its wide range of applications. The formation of the nanoparticles was confirmed through UV-Visible spectroscopy, FTIR, XRD, SEM with EDX, DLS, and zeta potential analysis. The results showed a strong absorbance peak at 407 nm, the presence of various functional groups, a nanocrystalline structure with a crystalline size of 17.56 nm, spherical-shaped particles with an average size of 76 nm, and the presence of the highest % mass of Ag and uniformly dispersed particles, respectively. The bioactivity of the synthesized squid ink silver nanoparticles was analyzed through antibacterial, antioxidant, anticancer, and toxicity studies. The dye degradation assay was also analyzed as a means of wastewater treatment for different industrial dyes. The antibacterial activity showed the highest zone of inhibition of 24 mm at a concentration of 100 μg/ml against Escherichia coli, followed by other tested strains. The nitric oxide radical scavenging assay showed the highest antioxidant activity (92%) at a concentration of 100 μg/ml. The cytotoxic ability of SI-AgNPs against the MDA-MB-231 breast cancer cell line revealed an IC<sub>50</sub> value of 4.52 μg/ml. The toxicity study revealed a dose and time-dependent activity with the LC<sub>50</sub> value of 5.090 and 3.303 mg/ml for 24 and 48 h, respectively. The successful degradation of dyes by SI-AgNPs is attributed to the cooperative action of the electron relay system with Ag as a catalyst and SI as a catalytic support. These findings indicate that SI-AgNPs are a novel potential product that should be further studied to improve its pharmacological, biomedical, and environmental applications.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-024-05001-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05001-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Eco-friendly Strategy for Producing Bio-based Silver Nanoparticles (AgNPs) Employing Sepioteuthis lessoniana ink, in Addition to Biological and Degradation of Dye Applications.
The squid, Sepioteuthis lessoniana, is a remarkable fishery product which is exported by many nations for use in industrial production or human consumption. This study focused on the synthesis of silver nanoparticles (AgNPs) from squid ink (SI) and its wide range of applications. The formation of the nanoparticles was confirmed through UV-Visible spectroscopy, FTIR, XRD, SEM with EDX, DLS, and zeta potential analysis. The results showed a strong absorbance peak at 407 nm, the presence of various functional groups, a nanocrystalline structure with a crystalline size of 17.56 nm, spherical-shaped particles with an average size of 76 nm, and the presence of the highest % mass of Ag and uniformly dispersed particles, respectively. The bioactivity of the synthesized squid ink silver nanoparticles was analyzed through antibacterial, antioxidant, anticancer, and toxicity studies. The dye degradation assay was also analyzed as a means of wastewater treatment for different industrial dyes. The antibacterial activity showed the highest zone of inhibition of 24 mm at a concentration of 100 μg/ml against Escherichia coli, followed by other tested strains. The nitric oxide radical scavenging assay showed the highest antioxidant activity (92%) at a concentration of 100 μg/ml. The cytotoxic ability of SI-AgNPs against the MDA-MB-231 breast cancer cell line revealed an IC50 value of 4.52 μg/ml. The toxicity study revealed a dose and time-dependent activity with the LC50 value of 5.090 and 3.303 mg/ml for 24 and 48 h, respectively. The successful degradation of dyes by SI-AgNPs is attributed to the cooperative action of the electron relay system with Ag as a catalyst and SI as a catalytic support. These findings indicate that SI-AgNPs are a novel potential product that should be further studied to improve its pharmacological, biomedical, and environmental applications.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.