用于大气和工业烟道气流中增强光热催化二氧化碳还原的 Zr-MOF/MXene 复合材料

{"title":"用于大气和工业烟道气流中增强光热催化二氧化碳还原的 Zr-MOF/MXene 复合材料","authors":"","doi":"10.1016/j.ccst.2024.100274","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a novel composite was engineered by integrating Zr-MOF (NH<sub>2</sub>-UIO-66) with MXene layers through electrostatic self-assembly. Under simulated sunlight and at 80 °C, this composite material achieved nearly complete conversion of low-concentration atmospheric CO<sub>2</sub> to CO and CH<sub>4</sub> without additional sacrificial agents or alkaline absorption liquids, marking one of the few reports demonstrating near-complete reduction of low-concentration CO<sub>2</sub> directly from the air. For high-concentration CO<sub>2</sub> in industrial flue gas, the composite utilized residual heat at 80 °C without additional energy input, exhibiting excellent CO<sub>2</sub> reduction efficiency with CO and CH4 production rates of 127 μmol·g<sup>-1</sup>·h<sup>-1</sup> and 330 μmol·g<sup>-1</sup>·h<sup>-1</sup>, respectively, resulting in a total production rate 4.76 times higher than that in the air. Compared to most reports on thermocatalytic CO<sub>2</sub> reduction (&gt;300 °C), this material shows significant advantages below 100 °C. The performance improvement is attributed to the introduction of Zr-MOF, which provides additional active sites and reduces activation energy. Additionally, the localized surface plasmon resonance (LSPR) effect of MXene facilitates the migration of thermal charge carriers to Zr<sup>4+</sup> sites within the MOF. Density Functional Theory (DFT) calculations validate these findings. Overall, Zr-MOF/MXene composite holds potential for reducing CO<sub>2</sub> in air and industrial settings, advancing energy conversion and environmental management.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000861/pdfft?md5=11d2fcb0396247f5104b80e9a544ea9d&pid=1-s2.0-S2772656824000861-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Zr-MOF/MXene composite for enhanced photothermal catalytic CO2 reduction in atmospheric and industrial flue gas streams\",\"authors\":\"\",\"doi\":\"10.1016/j.ccst.2024.100274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a novel composite was engineered by integrating Zr-MOF (NH<sub>2</sub>-UIO-66) with MXene layers through electrostatic self-assembly. Under simulated sunlight and at 80 °C, this composite material achieved nearly complete conversion of low-concentration atmospheric CO<sub>2</sub> to CO and CH<sub>4</sub> without additional sacrificial agents or alkaline absorption liquids, marking one of the few reports demonstrating near-complete reduction of low-concentration CO<sub>2</sub> directly from the air. For high-concentration CO<sub>2</sub> in industrial flue gas, the composite utilized residual heat at 80 °C without additional energy input, exhibiting excellent CO<sub>2</sub> reduction efficiency with CO and CH4 production rates of 127 μmol·g<sup>-1</sup>·h<sup>-1</sup> and 330 μmol·g<sup>-1</sup>·h<sup>-1</sup>, respectively, resulting in a total production rate 4.76 times higher than that in the air. Compared to most reports on thermocatalytic CO<sub>2</sub> reduction (&gt;300 °C), this material shows significant advantages below 100 °C. The performance improvement is attributed to the introduction of Zr-MOF, which provides additional active sites and reduces activation energy. Additionally, the localized surface plasmon resonance (LSPR) effect of MXene facilitates the migration of thermal charge carriers to Zr<sup>4+</sup> sites within the MOF. Density Functional Theory (DFT) calculations validate these findings. Overall, Zr-MOF/MXene composite holds potential for reducing CO<sub>2</sub> in air and industrial settings, advancing energy conversion and environmental management.</p></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772656824000861/pdfft?md5=11d2fcb0396247f5104b80e9a544ea9d&pid=1-s2.0-S2772656824000861-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656824000861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824000861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,通过静电自组装将 Zr-MOF (NH2-UIO-66) 与 MXene 层整合在一起,设计出了一种新型复合材料。在模拟太阳光和 80 °C 温度条件下,这种复合材料几乎完全将大气中的低浓度 CO2 转化为 CO 和 CH4,而无需额外的牺牲剂或碱性吸收液,这是少数几个直接从空气中几乎完全还原低浓度 CO2 的报告之一。对于工业烟道气中的高浓度 CO2,该复合材料利用 80 °C 的余热,无需额外的能量输入,表现出卓越的 CO2 还原效率,CO 和 CH4 生成率分别为 127 μmol-g-1-h-1 和 330 μmol-g-1-h-1,总生成率是空气中生成率的 4.76 倍。与大多数关于热催化二氧化碳还原(300 °C)的报道相比,这种材料在 100 °C以下具有显著优势。性能的提高归功于 Zr-MOF 的引入,它提供了额外的活性位点并降低了活化能。此外,MXene 的局部表面等离子体共振(LSPR)效应促进了热电荷载流子迁移到 MOF 中的 Zr4+ 位点。密度泛函理论(DFT)计算验证了这些发现。总之,Zr-MOF/MXene 复合材料有望减少空气和工业环境中的二氧化碳,促进能源转换和环境管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zr-MOF/MXene composite for enhanced photothermal catalytic CO2 reduction in atmospheric and industrial flue gas streams

In this study, a novel composite was engineered by integrating Zr-MOF (NH2-UIO-66) with MXene layers through electrostatic self-assembly. Under simulated sunlight and at 80 °C, this composite material achieved nearly complete conversion of low-concentration atmospheric CO2 to CO and CH4 without additional sacrificial agents or alkaline absorption liquids, marking one of the few reports demonstrating near-complete reduction of low-concentration CO2 directly from the air. For high-concentration CO2 in industrial flue gas, the composite utilized residual heat at 80 °C without additional energy input, exhibiting excellent CO2 reduction efficiency with CO and CH4 production rates of 127 μmol·g-1·h-1 and 330 μmol·g-1·h-1, respectively, resulting in a total production rate 4.76 times higher than that in the air. Compared to most reports on thermocatalytic CO2 reduction (>300 °C), this material shows significant advantages below 100 °C. The performance improvement is attributed to the introduction of Zr-MOF, which provides additional active sites and reduces activation energy. Additionally, the localized surface plasmon resonance (LSPR) effect of MXene facilitates the migration of thermal charge carriers to Zr4+ sites within the MOF. Density Functional Theory (DFT) calculations validate these findings. Overall, Zr-MOF/MXene composite holds potential for reducing CO2 in air and industrial settings, advancing energy conversion and environmental management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breakthroughs in CH4 capture technologies: Key to reducing fugitive methane emissions in the energy sector Thermal characterization and moisture adsorption performance of calcium alginate hydrogel/silica gel/polyvinylpyrrolidone/expanded graphite composite desiccant Towards planetary boundary sustainability of food processing wastewater, by resource recovery & emission reduction: A process system engineering perspective Assessment of the volatility of amine degradation compounds in aqueous MEA and blend of 1-(2HE)PRLD and 3A1P Exploiting process thermodynamics in carbon capture from direct air to industrial sources: The paradigmatic case of ionic liquids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1