Wenrui Zhao , Wenyou Hu , Feng Zhang , Yangxiaoxiao Shi , Yadan Wang , Xueqing Zhang , Tianhua Feng , Zhineng Hong , Jun Jiang , Renkou Xu
{"title":"中国东北地区农田黑土的可交换酸度特征","authors":"Wenrui Zhao , Wenyou Hu , Feng Zhang , Yangxiaoxiao Shi , Yadan Wang , Xueqing Zhang , Tianhua Feng , Zhineng Hong , Jun Jiang , Renkou Xu","doi":"10.1016/j.geodrs.2024.e00852","DOIUrl":null,"url":null,"abstract":"<div><p>Exchangeable aluminum (Exc-Al), an often overlooked yet indispensable soil parameter, predominantly contributes to soil exchangeable acidity. In this study, we utilized data from 53 sets of surface and subsurface black soil characteristics, including Exc-Al, exchangeable acid (Exc-acid), pH, soil organic matter (SOM), and available and total nutrient levels, to develop a neural network prediction model for estimating Exc-Al and Exc-acid in the black soil area of northeast China. The deterministic neural network model (NNM) was employed to predict Exc-Al and Exc-acid contents in 690 sets of surface and subsurface farmland soil samples with unknown Exc-Al and Exc-acid values. Subsequently, a black soil exchangeable acidity map for northeast China was generated through spatial interpolation. Our results revealed that the average Exc-Al and Exc-acid contents in the 53 surface soils were 0.82 and 0.93 cmol kg<sup>−1</sup>, respectively, while those in the corresponding subsurface soils were 0.58 and 0.70 cmol kg<sup>−1</sup>, respectively. Multi-layer perceptron (MLP) neural networks effectively simulated Exc-Al and Exc-acid contents in the surface and subsurface black soils, with calibrated determination coefficients (<em>R</em><sub><em>adj</em></sub><sup><em>2</em></sup>) of 0.95–0.96, relative root mean square errors (<em>rRMSE</em>) of 17.3%–24.8%, and statistical significance <em>α</em> at 0.001. The MLP estimations and spatial interpolations revealed that 2.0% and 17.6% of the surface black soil area, and 0% and 3.7% of the subsurface soil area exhibited Exc-Al content exceeding 2.0 and 1.0 cmol kg<sup>−1</sup>, respectively. Furthermore, 6.7% and 24.9% of the surface black soil area, and 0% and 6.3% of the subsurface soil area showed Exc-acid content exceeding 2.0 and 1.0 cmol kg<sup>−1</sup>, respectively. These findings break the limitation of relying solely on soil pH as the unique indicator, enrich our knowledge of black soil exchangeable acidity, and enhance our understanding of the black soil acidity status in northeast China.</p></div>","PeriodicalId":56001,"journal":{"name":"Geoderma Regional","volume":"38 ","pages":"Article e00852"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exchangeable acidity characteristics of farmland black soil in northeast China\",\"authors\":\"Wenrui Zhao , Wenyou Hu , Feng Zhang , Yangxiaoxiao Shi , Yadan Wang , Xueqing Zhang , Tianhua Feng , Zhineng Hong , Jun Jiang , Renkou Xu\",\"doi\":\"10.1016/j.geodrs.2024.e00852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exchangeable aluminum (Exc-Al), an often overlooked yet indispensable soil parameter, predominantly contributes to soil exchangeable acidity. In this study, we utilized data from 53 sets of surface and subsurface black soil characteristics, including Exc-Al, exchangeable acid (Exc-acid), pH, soil organic matter (SOM), and available and total nutrient levels, to develop a neural network prediction model for estimating Exc-Al and Exc-acid in the black soil area of northeast China. The deterministic neural network model (NNM) was employed to predict Exc-Al and Exc-acid contents in 690 sets of surface and subsurface farmland soil samples with unknown Exc-Al and Exc-acid values. Subsequently, a black soil exchangeable acidity map for northeast China was generated through spatial interpolation. Our results revealed that the average Exc-Al and Exc-acid contents in the 53 surface soils were 0.82 and 0.93 cmol kg<sup>−1</sup>, respectively, while those in the corresponding subsurface soils were 0.58 and 0.70 cmol kg<sup>−1</sup>, respectively. Multi-layer perceptron (MLP) neural networks effectively simulated Exc-Al and Exc-acid contents in the surface and subsurface black soils, with calibrated determination coefficients (<em>R</em><sub><em>adj</em></sub><sup><em>2</em></sup>) of 0.95–0.96, relative root mean square errors (<em>rRMSE</em>) of 17.3%–24.8%, and statistical significance <em>α</em> at 0.001. The MLP estimations and spatial interpolations revealed that 2.0% and 17.6% of the surface black soil area, and 0% and 3.7% of the subsurface soil area exhibited Exc-Al content exceeding 2.0 and 1.0 cmol kg<sup>−1</sup>, respectively. Furthermore, 6.7% and 24.9% of the surface black soil area, and 0% and 6.3% of the subsurface soil area showed Exc-acid content exceeding 2.0 and 1.0 cmol kg<sup>−1</sup>, respectively. These findings break the limitation of relying solely on soil pH as the unique indicator, enrich our knowledge of black soil exchangeable acidity, and enhance our understanding of the black soil acidity status in northeast China.</p></div>\",\"PeriodicalId\":56001,\"journal\":{\"name\":\"Geoderma Regional\",\"volume\":\"38 \",\"pages\":\"Article e00852\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoderma Regional\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352009424000993\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma Regional","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352009424000993","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Exchangeable acidity characteristics of farmland black soil in northeast China
Exchangeable aluminum (Exc-Al), an often overlooked yet indispensable soil parameter, predominantly contributes to soil exchangeable acidity. In this study, we utilized data from 53 sets of surface and subsurface black soil characteristics, including Exc-Al, exchangeable acid (Exc-acid), pH, soil organic matter (SOM), and available and total nutrient levels, to develop a neural network prediction model for estimating Exc-Al and Exc-acid in the black soil area of northeast China. The deterministic neural network model (NNM) was employed to predict Exc-Al and Exc-acid contents in 690 sets of surface and subsurface farmland soil samples with unknown Exc-Al and Exc-acid values. Subsequently, a black soil exchangeable acidity map for northeast China was generated through spatial interpolation. Our results revealed that the average Exc-Al and Exc-acid contents in the 53 surface soils were 0.82 and 0.93 cmol kg−1, respectively, while those in the corresponding subsurface soils were 0.58 and 0.70 cmol kg−1, respectively. Multi-layer perceptron (MLP) neural networks effectively simulated Exc-Al and Exc-acid contents in the surface and subsurface black soils, with calibrated determination coefficients (Radj2) of 0.95–0.96, relative root mean square errors (rRMSE) of 17.3%–24.8%, and statistical significance α at 0.001. The MLP estimations and spatial interpolations revealed that 2.0% and 17.6% of the surface black soil area, and 0% and 3.7% of the subsurface soil area exhibited Exc-Al content exceeding 2.0 and 1.0 cmol kg−1, respectively. Furthermore, 6.7% and 24.9% of the surface black soil area, and 0% and 6.3% of the subsurface soil area showed Exc-acid content exceeding 2.0 and 1.0 cmol kg−1, respectively. These findings break the limitation of relying solely on soil pH as the unique indicator, enrich our knowledge of black soil exchangeable acidity, and enhance our understanding of the black soil acidity status in northeast China.
期刊介绍:
Global issues require studies and solutions on national and regional levels. Geoderma Regional focuses on studies that increase understanding and advance our scientific knowledge of soils in all regions of the world. The journal embraces every aspect of soil science and welcomes reviews of regional progress.