{"title":"HFP 单体段对 P(VDF-TrFE-CFE-HFP)四元共聚物晶体结构和机电响应的影响","authors":"","doi":"10.1016/j.polymer.2024.127486","DOIUrl":null,"url":null,"abstract":"<div><p>The electromechanical properties of PVDF-based polymers, namely converting electrical into mechanical energy, are mainly decided by the crystal structure and domain size of the target product. Thus, we prepare the poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)), its terpolymer poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)), and tetrapolymer poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene -hexafluoropropylene) (P(VDF-TrFE-CFE-HFP)) films for comparison, respectively, where the role of the introduction of third and fourth monomers in the electromechanical properties of P(VDF-TrFE) is completely disclosed. Because of introducing CFE and HFP monomers, P(VDF-TrFE) with the ferroelectricity has converted into the relaxor ferroelectric P(VDF-TrFE-CFE-HFP) with a slimmer P-E loop while maintaining good maximum polarization (<em>P</em><sub>m</sub>). Since the nano ferroelectric domains in the relaxor ferroelectric material are easy to reverse along the polarizing electric field, The P(VDF-TrFE-CFE-HFP) sample achieved a dielectric constant (<em>ε</em><sub>r</sub>) of ∼29 and a strain in the thickness direction (<em>S</em><sub>33</sub>) of ∼ -5%, respectively, while the <em>ε</em><sub>r</sub> and <em>S</em><sub>33</sub> of P(VDF-TrFE) sample are ∼11 and ∼-0.8 %, respectively. This research indicates the availability of the third and fourth monomers for improving the electromechanical effect of such electrostrictive polymers, having wide applications in flexible actuators, transformers, sensors, and so forth.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of HFP monomer segments on the crystal structure and electromechanical responses of a P(VDF-TrFE-CFE-HFP) tetrapolymer\",\"authors\":\"\",\"doi\":\"10.1016/j.polymer.2024.127486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The electromechanical properties of PVDF-based polymers, namely converting electrical into mechanical energy, are mainly decided by the crystal structure and domain size of the target product. Thus, we prepare the poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)), its terpolymer poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)), and tetrapolymer poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene -hexafluoropropylene) (P(VDF-TrFE-CFE-HFP)) films for comparison, respectively, where the role of the introduction of third and fourth monomers in the electromechanical properties of P(VDF-TrFE) is completely disclosed. Because of introducing CFE and HFP monomers, P(VDF-TrFE) with the ferroelectricity has converted into the relaxor ferroelectric P(VDF-TrFE-CFE-HFP) with a slimmer P-E loop while maintaining good maximum polarization (<em>P</em><sub>m</sub>). Since the nano ferroelectric domains in the relaxor ferroelectric material are easy to reverse along the polarizing electric field, The P(VDF-TrFE-CFE-HFP) sample achieved a dielectric constant (<em>ε</em><sub>r</sub>) of ∼29 and a strain in the thickness direction (<em>S</em><sub>33</sub>) of ∼ -5%, respectively, while the <em>ε</em><sub>r</sub> and <em>S</em><sub>33</sub> of P(VDF-TrFE) sample are ∼11 and ∼-0.8 %, respectively. This research indicates the availability of the third and fourth monomers for improving the electromechanical effect of such electrostrictive polymers, having wide applications in flexible actuators, transformers, sensors, and so forth.</p></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003238612400822X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003238612400822X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Influence of HFP monomer segments on the crystal structure and electromechanical responses of a P(VDF-TrFE-CFE-HFP) tetrapolymer
The electromechanical properties of PVDF-based polymers, namely converting electrical into mechanical energy, are mainly decided by the crystal structure and domain size of the target product. Thus, we prepare the poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)), its terpolymer poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)), and tetrapolymer poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene -hexafluoropropylene) (P(VDF-TrFE-CFE-HFP)) films for comparison, respectively, where the role of the introduction of third and fourth monomers in the electromechanical properties of P(VDF-TrFE) is completely disclosed. Because of introducing CFE and HFP monomers, P(VDF-TrFE) with the ferroelectricity has converted into the relaxor ferroelectric P(VDF-TrFE-CFE-HFP) with a slimmer P-E loop while maintaining good maximum polarization (Pm). Since the nano ferroelectric domains in the relaxor ferroelectric material are easy to reverse along the polarizing electric field, The P(VDF-TrFE-CFE-HFP) sample achieved a dielectric constant (εr) of ∼29 and a strain in the thickness direction (S33) of ∼ -5%, respectively, while the εr and S33 of P(VDF-TrFE) sample are ∼11 and ∼-0.8 %, respectively. This research indicates the availability of the third and fourth monomers for improving the electromechanical effect of such electrostrictive polymers, having wide applications in flexible actuators, transformers, sensors, and so forth.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.