Shobana V. Stassen, Minato Kobashi, Edmund Y. Lam, Yuanhua Huang, Joshua W. K. Ho, Kevin K. Tsia
{"title":"StaVia:利用高阶随机游走为细胞图谱绘制时空感知地图","authors":"Shobana V. Stassen, Minato Kobashi, Edmund Y. Lam, Yuanhua Huang, Joshua W. K. Ho, Kevin K. Tsia","doi":"10.1186/s13059-024-03347-y","DOIUrl":null,"url":null,"abstract":"Single-cell atlases pose daunting computational challenges pertaining to the integration of spatial and temporal information and the visualization of trajectories across large atlases. We introduce StaVia, a computational framework that synergizes multi-faceted single-cell data with higher-order random walks that leverage the memory of cells’ past states, fused with a cartographic Atlas View that offers intuitive graph visualization. This spatially aware cartography captures relationships between cell populations based on their spatial location as well as their gene expression and developmental stage. We demonstrate this using zebrafish gastrulation data, underscoring its potential to dissect complex biological landscapes in both spatial and temporal contexts.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"30 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"StaVia: spatially and temporally aware cartography with higher-order random walks for cell atlases\",\"authors\":\"Shobana V. Stassen, Minato Kobashi, Edmund Y. Lam, Yuanhua Huang, Joshua W. K. Ho, Kevin K. Tsia\",\"doi\":\"10.1186/s13059-024-03347-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell atlases pose daunting computational challenges pertaining to the integration of spatial and temporal information and the visualization of trajectories across large atlases. We introduce StaVia, a computational framework that synergizes multi-faceted single-cell data with higher-order random walks that leverage the memory of cells’ past states, fused with a cartographic Atlas View that offers intuitive graph visualization. This spatially aware cartography captures relationships between cell populations based on their spatial location as well as their gene expression and developmental stage. We demonstrate this using zebrafish gastrulation data, underscoring its potential to dissect complex biological landscapes in both spatial and temporal contexts.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03347-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03347-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
StaVia: spatially and temporally aware cartography with higher-order random walks for cell atlases
Single-cell atlases pose daunting computational challenges pertaining to the integration of spatial and temporal information and the visualization of trajectories across large atlases. We introduce StaVia, a computational framework that synergizes multi-faceted single-cell data with higher-order random walks that leverage the memory of cells’ past states, fused with a cartographic Atlas View that offers intuitive graph visualization. This spatially aware cartography captures relationships between cell populations based on their spatial location as well as their gene expression and developmental stage. We demonstrate this using zebrafish gastrulation data, underscoring its potential to dissect complex biological landscapes in both spatial and temporal contexts.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.