{"title":"设计热休克反应最小的抗热基因控制装置","authors":"Haofeng Chen, Shan Jiang, Kaixuan Xu, Ziyu Ding, Jiangkai Wang, Mingfeng Cao, Jifeng Yuan","doi":"10.1021/acssynbio.4c00236","DOIUrl":null,"url":null,"abstract":"<p><p>As temperature serves as a versatile input signal, thermoresponsive genetic controls have gained significant interest for recombinant protein production and metabolic engineering applications. The conventional thermoresponsive systems normally require the continuous exposure of heat stimuli to trigger the prolonged expression of targeted genes, and the accompanied heat-shock response is detrimental to the bioproduction process. In this study, we present the design of thermoresponsive quorum-sensing (ThermoQS) circuits to make <i>Escherichia coli</i> record transient heat stimuli. By conversion of the heat input into the accumulation of quorum-sensing molecules such as acyl-homoserine lactone derived from <i>Pseudomonas aeruginosa</i>, sustained gene expressions were achieved by a minimal heat stimulus. Moreover, we also demonstrated that we reprogrammed the <i>E. coli Lac</i> operon to make it respond to heat stimuli with an impressive signal-to-noise ratio (S/N) of 15.3. Taken together, we envision that the ThermoQS systems reported in this study are expected to remarkably diminish both design and experimental expenditures for future metabolic engineering applications.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Thermoresponsive Genetic Controls with Minimal Heat-Shock Response.\",\"authors\":\"Haofeng Chen, Shan Jiang, Kaixuan Xu, Ziyu Ding, Jiangkai Wang, Mingfeng Cao, Jifeng Yuan\",\"doi\":\"10.1021/acssynbio.4c00236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As temperature serves as a versatile input signal, thermoresponsive genetic controls have gained significant interest for recombinant protein production and metabolic engineering applications. The conventional thermoresponsive systems normally require the continuous exposure of heat stimuli to trigger the prolonged expression of targeted genes, and the accompanied heat-shock response is detrimental to the bioproduction process. In this study, we present the design of thermoresponsive quorum-sensing (ThermoQS) circuits to make <i>Escherichia coli</i> record transient heat stimuli. By conversion of the heat input into the accumulation of quorum-sensing molecules such as acyl-homoserine lactone derived from <i>Pseudomonas aeruginosa</i>, sustained gene expressions were achieved by a minimal heat stimulus. Moreover, we also demonstrated that we reprogrammed the <i>E. coli Lac</i> operon to make it respond to heat stimuli with an impressive signal-to-noise ratio (S/N) of 15.3. Taken together, we envision that the ThermoQS systems reported in this study are expected to remarkably diminish both design and experimental expenditures for future metabolic engineering applications.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acssynbio.4c00236\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00236","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Design of Thermoresponsive Genetic Controls with Minimal Heat-Shock Response.
As temperature serves as a versatile input signal, thermoresponsive genetic controls have gained significant interest for recombinant protein production and metabolic engineering applications. The conventional thermoresponsive systems normally require the continuous exposure of heat stimuli to trigger the prolonged expression of targeted genes, and the accompanied heat-shock response is detrimental to the bioproduction process. In this study, we present the design of thermoresponsive quorum-sensing (ThermoQS) circuits to make Escherichia coli record transient heat stimuli. By conversion of the heat input into the accumulation of quorum-sensing molecules such as acyl-homoserine lactone derived from Pseudomonas aeruginosa, sustained gene expressions were achieved by a minimal heat stimulus. Moreover, we also demonstrated that we reprogrammed the E. coli Lac operon to make it respond to heat stimuli with an impressive signal-to-noise ratio (S/N) of 15.3. Taken together, we envision that the ThermoQS systems reported in this study are expected to remarkably diminish both design and experimental expenditures for future metabolic engineering applications.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.