P. Minigher , A. Arteiro , A. Turon , J. Fatemi , S. Guinard , L. Barrière , P.P. Camanho
{"title":"一种高效的全局/局部随机方法,用于层状复合材料的精确应力分析、失效预测和损伤容限","authors":"P. Minigher , A. Arteiro , A. Turon , J. Fatemi , S. Guinard , L. Barrière , P.P. Camanho","doi":"10.1016/j.ijsolstr.2024.113026","DOIUrl":null,"url":null,"abstract":"<div><p>The quantification of uncertainties in the mechanical response of composite structures can be a computationally demanding task. This is due both to the number of uncertain parameters in a real study case and the complexity of the model to be analysed. In this paper, an efficient global/local approach to estimate the uncertainties of the quantities of interest in specific regions of interest with limited computational effort is proposed. This is achieved by refining only locally the model taking advantage of Refined Structural Theories. At the same time, since the variance of the uncertain parameters is usually relatively small, the stochastic analysis is dealt with a sensitivity study carried out both in the global and in the local model. In this way, it is possible to assess the influence of global and local uncertain parameters in the same submodeling analysis. The methodology presented is applied to several study cases of interest. The results focus on obtaining probabilistic distributions of the stress field that can be later used in failure criteria to evaluate the subsequent distribution of the failure index. Furthermore, a damage tolerance study case is investigated, showing good correlation with the reference Monte Carlo simulations.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"303 ","pages":"Article 113026"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020768324003858/pdfft?md5=b1817d2b8cc5b5868acdd6d02b6bb8a9&pid=1-s2.0-S0020768324003858-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On an efficient global/local stochastic methodology for accurate stress analysis, failure prediction and damage tolerance of laminated composites\",\"authors\":\"P. Minigher , A. Arteiro , A. Turon , J. Fatemi , S. Guinard , L. Barrière , P.P. Camanho\",\"doi\":\"10.1016/j.ijsolstr.2024.113026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The quantification of uncertainties in the mechanical response of composite structures can be a computationally demanding task. This is due both to the number of uncertain parameters in a real study case and the complexity of the model to be analysed. In this paper, an efficient global/local approach to estimate the uncertainties of the quantities of interest in specific regions of interest with limited computational effort is proposed. This is achieved by refining only locally the model taking advantage of Refined Structural Theories. At the same time, since the variance of the uncertain parameters is usually relatively small, the stochastic analysis is dealt with a sensitivity study carried out both in the global and in the local model. In this way, it is possible to assess the influence of global and local uncertain parameters in the same submodeling analysis. The methodology presented is applied to several study cases of interest. The results focus on obtaining probabilistic distributions of the stress field that can be later used in failure criteria to evaluate the subsequent distribution of the failure index. Furthermore, a damage tolerance study case is investigated, showing good correlation with the reference Monte Carlo simulations.</p></div>\",\"PeriodicalId\":14311,\"journal\":{\"name\":\"International Journal of Solids and Structures\",\"volume\":\"303 \",\"pages\":\"Article 113026\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0020768324003858/pdfft?md5=b1817d2b8cc5b5868acdd6d02b6bb8a9&pid=1-s2.0-S0020768324003858-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020768324003858\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324003858","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
On an efficient global/local stochastic methodology for accurate stress analysis, failure prediction and damage tolerance of laminated composites
The quantification of uncertainties in the mechanical response of composite structures can be a computationally demanding task. This is due both to the number of uncertain parameters in a real study case and the complexity of the model to be analysed. In this paper, an efficient global/local approach to estimate the uncertainties of the quantities of interest in specific regions of interest with limited computational effort is proposed. This is achieved by refining only locally the model taking advantage of Refined Structural Theories. At the same time, since the variance of the uncertain parameters is usually relatively small, the stochastic analysis is dealt with a sensitivity study carried out both in the global and in the local model. In this way, it is possible to assess the influence of global and local uncertain parameters in the same submodeling analysis. The methodology presented is applied to several study cases of interest. The results focus on obtaining probabilistic distributions of the stress field that can be later used in failure criteria to evaluate the subsequent distribution of the failure index. Furthermore, a damage tolerance study case is investigated, showing good correlation with the reference Monte Carlo simulations.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.